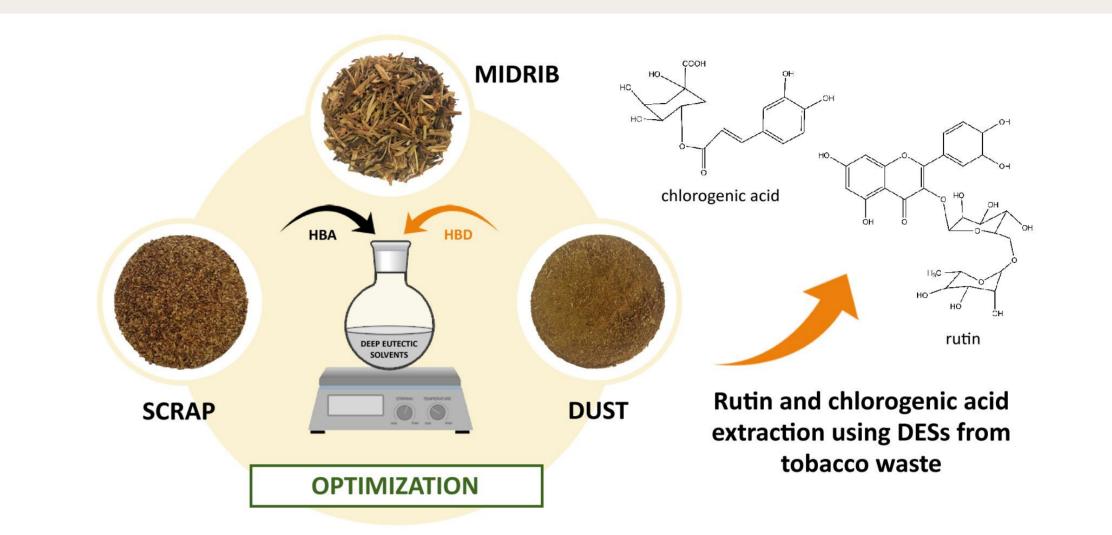


XIII Meeting of Young Chemical Engineers, Zagreb 20th and 21st February 2020.


Extraction of bioactive compounds from tobacco waste using deep eutectic solvents

Marija Banožić¹, Maja Matić², Silvija Šafranko¹, Ana-Marija Cikoš¹, Martina Jakovljević¹, Maja Molnar¹, Stela Jokić¹

¹ Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Croatia ² University of Mostar, Faculty of Agriculture and Food Technology Mostar, Bosnia and Herzegovina * Correspondence: mbanozic@ptfos.hr

INTRODUCTION

Tobacco waste is a solid waste generated during leaf processing. Tobacco leaves processing generates three fraction of tobacco waste, namely scrap, midrib and dust, with differences in granulation, generation place during processing, and moisture content. The objective of these study was to investigate the efficacy of eutectic solvents in the extraction of bioactive compounds from tobacco waste. Influence of extraction parameters on the properties of the obtained extracts (total phenol, antioxidant activity, chlorogenic acid and rutin) has been determined. Using response surface methodology optimal extraction parameters were defined. Extraction with deep eutectic solvents on tobacco waste has not yet been sufficiently investigated and proposed research represents an innovative approach in extraction of bioactive compounds from mentioned material.

MATERIALS

TOBACCO WASTE

Tobacco industrial waste (dust, midrib and scrap) were obtained in 2018 from tobacco processing factory "Fabrika duhana Sarajevo" (Bosnia and Herzegovina).

Tobacco waste was obtained in dry condition, after industry processing. All samples were kept at ambient temperature at dark and dry place before the extraction. Tobacco leaves and waste were pulverized before the extraction (MRC Sample mill C-SM/450-C. Holon, Israel).

Figure 1. Tobacco waste (scrap, dust and midrib)

DES PREPARATION EXTRACTION

DESs were prepared by mixing choline chloride (ChCl) as HBA with 15 different HBDs in certain molar ratio as specified in Table 1. The each mixture was heated to 80°C under constant stirring until a stable homogeneous liquid was formed. Dried and milled tobacco waste of each type (scrap, dust and midrib) were weighted (50 mg) and mixed with 1 mL of the mixture of DES with specific amount of distilled water. The mixture of DES and 20 % of added water (v/v) was then stirred at 50°C for 30 min. After the extraction, the mixture was centrifuged at 6000 rpm for 5 min and then decanted. The supernatant of 200 μ L was then diluted with 800 µL methanol and filtered through a PTFE 0.45 µm filter before HPLC analysis. The extraction was performed in duplicate.

DEEP EUTECTIC SOLVENTS

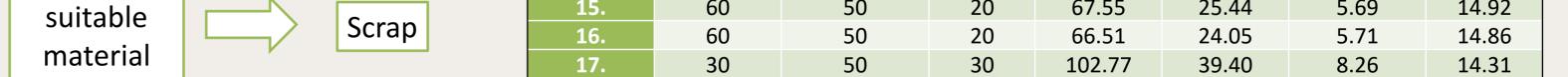
SCREENING

Table 1. List of DESs prepared and tested
 for the extraction of phenolic compound from tobacco waste

Hydrogen Bond	Hydrogen Bond	Mole Ratio					
Acceptors	Donors	(HBA: HBD)					
(HBAs)	(HBDs)						
Choline chloride	Urea	1:2					
Choline chloride	N-methyllurea	1:3					
Choline chloride	Glucose	1:1					
Choline chloride	Xylitol	1:1					
Choline chloride	Sorbitol	1:1					
Choline chloride	Butan-1,4-diol	1:2					
Choline chloride	Etan-1,2-diol	1:2					
Choline chloride	Glycerol	1:2					
Choline chloride	Acetamide	1:2					
Choline chloride	Malic acid	1:1					
Choline chloride	Citric acid	1:2					
Choline chloride	Malonic acid	1:1					
Choline chloride	Oxalic acid	1:1					
Choline chloride	Lactic acid	1:1					
Choline chloride	Levulinic acid	1:1					
Best DES Choline chloride: Etan-1,2-diol							
	_ carr	_,					
Most							

ANALYSIS

Antioxidant activity (DPPH) and total phenol content was determined using UV-visible spectrophotometer. Identification and quantification of bioactive compounds was performed by high performance liquid chromatography with diode array detection (HPLC/DAD)


Table 2. Experimental design used in RSM with experimental values for total phenol
 content, DPPH and Chlorogenic acid and rutin content

:3 :1 :1 :1 :2 :2	RUN	Time (min)	Temperature (°C)	Water content (%)	Total phenol content (mg GAE/L)	% DPPH	Klorogenska kiselina (µg/mL)	Rutin (µg/mL)
:2	1.	60	30	30	90.21	36.97	6.56	17.85
:2	2.	60	50	20	67.52	29.45	5.27	14.85
:1	3.	30	70	20	86.10	30.03	8.07	14.04
:2	4.	90	50	30	113.41	44.68	-	17.85
:1	5.	30	50	10	63.54	29.32	6.86	9.27
:1	6.	60	30	10	52.89	31.42	8.78	10.42
:1	7.	90	50	10	80.08	22.56	7.84	13.67
:1	8.	90	30	20	69.95	31.83	6.92	14.16
	9.	90	70	20	125.08	44.34	-	15.82
	10.	60	70	30	147.26	41.60	-	17.67
loride:	11.	60	70	10	105.97	44.24	4.66	12.06
	12.	30	30	20	67.51	30.18	6.66	12.24
iol	13.	60	50	20	64.41	26.98	4.29	14.81
	14.	60	50	20	68.52	26.73	6.70	14.79
-	15.	60	50	20	67.55	25.44	5.69	14.92

OPTIMIZATION

Table 3. Analysis of variance (ANOVA) of second-order polynomial models for tobacco waste (scrap)

Source	Sum of Squares	Degree of Freedom	Mean Square	F-value	<i>p</i> -value	Source	Sum of Squares	Degree of Freedo m	Mean Square	F-value	<i>p</i> -value
Total phenol content						Chlorogenic acid					
Model	11404.09	9	1267.12	52.73	< 0.0001	Model	124.76	9	13.86	15.09	0.0008
$X_1 - Time$	754.66	1	754.66	31.40	0.0008	X_1 - Time	28.46	1	28.46	30.97	0.0008
X ₂ - Temperature	4663.37	1	4663.37	194.06	< 0.0001	X_2 - Temperature	32.76	1	32.76	35.66	0.0006
X ₃ − Water content	2848.24	1	2848.24	118.53	< 0.0001	X ₃ - Water content	22.18	1	22.18	24.13	0.0017
$X_1 X_2$	520.75	1	520.75	21.67	0.0023	$X_1 X_2$	17.35	1	17.35	18.88	0.0034
$X_1 X_3$	8.70	1	8.70	0.3621	0.5663	$X_1 X_3$	21.34	1	21.34	23.23	0.0019
$X_2 X_3$	4.39	1	4.39	0.1826	0.6819	$X_2 X_3$	1.49	1	1.49	1.62	0.2438
X ₁ ²	190.83	1	190.83	7.94	0.0258	X ₁ ²	0.4053	1	0.4053	0.4410	0.5279
X ₂ ²	1053.08	1	1053.08	43.82	0.0003	X ₂ ²	0.7776	1	0.7776	0.8462	0.3882
X ₃ ²	1122.78	1	1122.78	46.72	0.0002	X_{3}^{2}	0.0440	1	0.0440	0.0479	0.8330
RESIDUAL	168.21	7	24.03			RESIDUAL	6.43	7	0.9189		
LACK OF FIT	166.94	3	55.65	175.17	0.0001	LACK OF FIT	3.40	3	1.13	1.50	0.3439
PURE ERROR	1.27	4	0.3177			PURE ERROR	3.03	4	0.7580		
TOTAL	11572.31	16				TOTAL	131.20	16			
R ²	0.9855					R ²	0.9510				
DPPH						<u>Rutin</u>					
Model	779.01	9	86.56	3.93	0.0423	Model	85.88	9	9.54	14.58	0.0009
X ₁ - Time	26.21	1	26.21	1.19	0.3113	X ₁ - Time	16.94	1	16.94	25.88	0.0014
X ₂ - Temperature	111.08	1	111.08	5.05	0.0595	X_2 - Temperature	3.03	1	3.03	4.62	0.0686
X ₃ - Water content	154.09	1	154.09	7.00	0.0331	X ₃ - Water content	61.94	1	61.94	94.64	< 0.0001
$X_1 X_2$	40.07	1	40.07	1.82	0.2192	$X_1 X_2$	0.0049	1	0.0049	0.0075	0.9335
$X_1 X_3$	36.24	1	36.24	1.65	0.2402	X_1X_3	0.1849	1	0.1849	0.2825	0.6115
$X_2 X_3$	16.77	1	16.77	0.7620	0.4116	X_2X_3	0.8281	1	0.8281	1.27	0.2977
X ₁ ²	15.18	1	15.18	0.6898	0.4336	X ₁ ²	2.39	1	2.39	3.65	0.0978
X ₂ ²	176.05	1	176.05	8.00	0.0255	X ₂ ²	0.0033	1	0.0033	0.0050	0.9454
X ₃ ²	170.38	1	170.38	7.74	0.0272	X ₃ ²	0.4258	1	0.4258	0.6506	0.4464
RESIDUAL	154.04	7	22.01			RESIDUAL	4.58	7	0.6545		
LACK OF FIT	148.50	3	49.50	35.69	0.0024	LACK OF FIT	4.57	3	1.52	602.27	< 0.0001
PURE ERROR	5.55	4	1.39			PURE ERROR	0.0101	4	0.0025		
TOTAL	933.06	16				TOTAL	90.46	16			
R ²	0.8349					R ²	0.9494				

The best-fitted models for obtained values were quadratic models without response transformation:

Total phenol content= $66.89 + 9.71X_1 + 24.14X_2 + 18.87X_3 + 6.73X_1^2 + 15.81X_2^2 + 16.33X_3^2 + 16.33$ $11.41X_1X_2 - 1.48X_1X_3 + 1.05X_2X_3$

DPPH = $25.73 + 1.81X_1 + 3.73X_2 + 4.39X_3 + 1.9X_1^2 + 6.47X_2^2 + 6.36X_3^2 + 3.16X_1X_2 + 3.01X_1X_3 - 2.01X_1X_3 + 1.0X_1^2 + 3.01X_1X_3 + 1.0X_1^2 + 3.00X_1^2 + 3.00$ $2.05 X_2 X_3$

 $2.31X_1X_3 - 0.61X_2X_3$

Rutin = $14.85 + 1.46X_1 + 0.62X_2 + 2.78X_3 - 0.75X_1^2 - 0.028X_2^2 - 0.32X_3^2 - 0.0035X_1X_2 - 0.0035X_2$ $0.21X_1X_3 - 0.46X_2X_3$

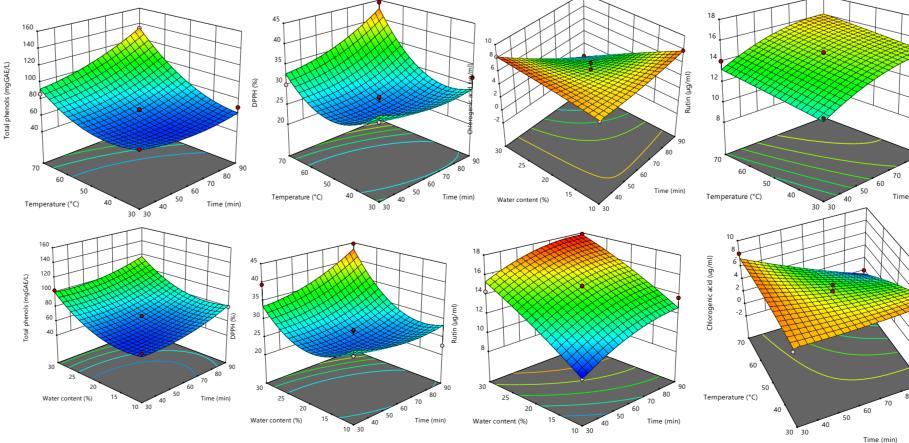


Figure 2. Response surface plots showing the effects of temperature, time and water content on DES extraction of tobacco waste: Scrap

Table 4. Optimal DES extraction parameters and predicted response data for tobacco waste obtained by RSM

Time (min)	30
Temperature (°C)	70
Water content (%)	29.99
Predicted total phenol	130.177
content (mg GAE/L)	
Predicted DPPH value (%)	38.13
Predicted chlorogenic acid content (µg/ml)	7.29
Predicted rutin content (µg/ml)	15.48
Desirability	0.767

Predicted data were experimentally verified with good agreement between predicted and experimental values with a deviation of \pm 5 %, which confirms significance of proposed model.

CONCLUSIONS

The use of DES extraction for the purpose of isolation of bioactive compounds from tobacco waste proved to be highly efficient. The screening showed that DES mixture choline chloride: Etan-1,2-diol and tobacco waste: scrap was the most suitable for the extraction.

ACKNOWLEDGEMENT

This work has been supported by Croatian Science Foundation under the project "Application of innovative techniques of the extraction of bioactive components from by-products of plant origin"

Using response surface methodology optimal parameters were defined (30 min,

70°C, 29.99 % water). The meaning of the proposed research is reflected in the

maximum utilization of tobacco by-product in order to obtain extracts that can be

implemented in other products and processes.

