

Znanstvena škola: Integrirani pristup istraživanju utjecaja industrijskih odlagališta otpada na okoliš, Institut Ruđer Bošković, Zagreb, 24.-27.11.2020.

Application of innovative extraction techniques in sustainable tobacco waste management Primjena inovativnih tehnika ekstrakcije u održivom gospodarenju duhanskim otpadom

Marija Banožić, Stela Jokić

Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Croatia Correspondence: mbanozic@ptfos.hr

INTRODUCTION

Industrial waste is a growing problem across the world. Its accumulation has enormous environmental but also economic and social consequences. The tendency to reduce industrial waste has resulted in the development of new technologies that utilize by-products for various purposes. Tobacco waste is a solid waste generated during leaf processing. Tobacco leaves processing generates three fraction of tobacco waste, namely scrap, midrib and dust, with differences in granulation, generation place during processing, and moisture content. The objective of those studies was to investigate the efficacy of different extraction techniques of bioactive compounds from tobacco waste. Influence of extraction parameters on the properties of the obtained extracts has been determined. Using response surface methodology optimal extraction parameters were defined. Green extraction techniques in tobacco waste management have not yet been sufficiently investigated and presented research represents an innovative approach in tobacco waste management.

at ambient temperature at dark and dry place before the extraction. Tobacco leaves and waste were pulverized before the extraction (MRC Sample mill C-SM/450-C. Holon, Israel).

Figure 1. Tobacco waste (scrap, dust and midrib)

- Total phenols contents (Folin-**Ciocalteu assay**)
- Antioxidant activity (DPPH method)
- Statistical analysis and experimental design using response surface methodology (Design Expert)

ULTRASOUND-ASSISTED EXTRACTION (UAE)

Tested variables	Time (min)	Temperature (°C)	Solvent/solid ratio (mL/g)	ethanol-water ratio (%)				
Experimental range	30-90	30-70	10-30	40-80				
Detected compounds	Phenolic compounds, chlorogenic acid, rutin, solanesol, caffeic acid, nicotine, volatile organic compounds, neophytadiene, 4,8,13-duvatriene-1,3- diol							
Activity	Antioxidant activity							
Optimal conditions for polar compounds	Scrap: 46 15.19 10 m 40% eth wat rati	min, 3 L/g, nanol- er etl	st: 53.59 °C, 38.31 min, 10 mL/g, 55.43% hanol-water ratio	Midrib: 69.27 °C, 38.31 min, 11 mL/g, 44.83% ethanol-water ratio				
Optimal conditions for non-polar compounds	Scrap: 7 50 m 12.74 i	nin,	Oust: 70 °C, 45 min, 10 mL/g	Midrib: 70 °C, 20.19 min, 10 mL/g				

SUBCRITICAL WATER EXTRACTION (SWE)

ested variables	Time (min)	Temperature (°C)	Solvent/solid	ratio (mL/g)	Te Va		
xperimental range	5-25	150-250	10-	30	Ex ra		
etected compounds	Phenolic compounds, carbohydrates, chlorogenic acid, rutin, nicotine, 3,4 DHBA, nicotinic acid, nicotinamide, 5-HMF, furfural and 5-MF						
ctivity		Antioxidant	t activity		A		
ptimal conditions	Scrap: 150 23 min, 28 mL/§	,	st: 160 °C, 20 min, 10 mL/g	Midrib: 150 °C, 25 min, 30 mL/g	0		

HIGH VOLTAGE ELECTRIC DISCHARGE-ASSISTED EXTRACTION (HV/ED)

EXTRACTION WITH DEEP EUTECTIC SOLVENTS (DES)

1	Tested variables	Time (min)	Temperature (°C)	Water content (%)				
	Experimental range	30-90	30-70	10-30				
	Detected compounds	Phenolic compounds, chlorogenic acid, rutin						
	Activity	An	tioxidant activity					
	Optimal conditions		0 min, 70°C, 29.99 Choline chloride:					

PULSED ELECTRIC FIELD-ASSISTED FXTRACTION (PFF)

CLIDEDCDITICAL ELLID EVTDACTION

SUPERCRIFICAL FLUID EXTRACTION			A3313					EXTRACTION (PEF)				
	(SFE			Tested variables	Time (min)	Frequency (Hz)	Solvent/solid ratio (mL/g)	Tested variables	Number of	Field strength	Solvent/solid	Time (s)
Tested variables	Pressure (bar)	Temperature (°C)	Time (min)	Experimental range	15-45	30-70	300-700	Experimental range	pulses 10-50	(kV/cm) 4-12 kV/cm	ratio (mL/g) 10-30	22-66
Experimental range	100-300	40-80	5-120	Detected compounds	Phenolic compounds, chlorogenic acid, rutin, nicotine			Detected	Nicotine, phenolic compounds, chlorogenic acid rutin			genic acid
Detected compounds	Fatty acids, nicotir	ne, volatile organic	compounds Optimal conditions Scrap: 4			ntioxidant activity Dust: 73 Hz,	Midrib: 40 Hz,	compounds Activity	Antioxidant activity			
Optimal conditions	Type: scrap, 12	0 min, 300 bar and	61.22 °C		16.3 min, 692 mL/g	15 min, 700 mL/g	41 min, 689 mL/g	Optimal conditions	Type: scrap, 46.45 s, 29.76 of pulses, 26.19 kV/cm			L9 mL/g, 7.1
60		WE Combination of SFE and SWE	100 90 80 70 60 50 40 30 20 10 10 0 UAE	DPPH (%)	Combination DES of SFE and SWE	140 120 100 80 60 40 20 0 UAE P	Total phenols (mg/g)	Combination DES of SFE and SWE		Chlorogenic	SWE Combination SFE and S	
		arison of influence of different extraction Figure 4. Comparison of extraction of phenolic of tobacco waste						In extraction				
CONCLUSIONS					ACKNOWLEDGEMENT							
SWE enabled high	extraction yield, b	ut some degrada	tion products (d volatile organic comp (furfurals) occurred on g concentration of p	higher			atian Science Foun		er the		Hrzz Croatian Science Foundation

compounds (chlorogenic, acid and rutin). Sequence of SFE and SWE showed as most efficient, due to differences in polarity of solvents (supercritical CO₂ and subcritical water).

the extraction of bioactive components from by-products of plant origin" Treatment of tobacco waste such as recycling and reusing are an imperative today due to rigorous (UIP-2017-05-9909) environmental protection legislation. Studied green extraction techniques in this paper provided advantages over conventional extraction methods, such as being "greener", faster and more ByProExtract efficient.

project "Application of innovative techniques of