VII International Congress "Engineering, Environment and Materials in Processing Industry", Jahorina, 17.-19.03.2021.

GREEN EXTRACTION APPROACH FOR THE RECOVERY OF BIOACTIVE COMPOUNDS FROM TOBACCO WASTE

<u>Marija Banožić¹, Krunoslav Aladić¹, Jelena Vladić², Senka Vidović², Silvija Šafranko¹, Ana-Marija Cikoš¹, Stela Jokić¹</u> ¹ Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia ²Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia *mbanozic@ptfos.hr

INTRODUCTION

Recent trends in the separation techniques have been largely focused on the green extraction techniques. The conventional extraction techniques require the high energy "input", including the consumption of harmful organic solvents, prolonged extraction time and utilization of high temperatures, and consequently degradation of thermolabile components occur. The novel extraction techniques such as supercritical CO_2 extraction, ultrasound assisted extraction, high voltage electric discharge assisted extraction and subcritical water extraction avoid or reduce these disadvantages and improve extraction efficiency. The aim of this paper is to give an overview of our results in the recovery of bioactive compounds from tobacco waste, with special attention to dominant bioactive compounds in tobacco waste, nicotine and chlorogenic acid respectively.

EXTRACTION WITH DEEP EUTECTIC SOLVENTS (DES)

Time (min)

Tested variables

Temperature Water

Tested variables

RESULTS

Erequency (Ha) Solvent/solid

MATERIALS AND METHODS

Three types of tobacco waste (scrap, dust and midrib) and Virginia leaf blend (composed by 73.3% Virginia and 26.7% oriental tobaccos) as starting material were obtained from tobacco factory "Fabrika duhana Sarajevo" and subjected to different extraction techniques and process conditions.

ANALYSIS:

- Gas Chromatography coupled to Mass Spectrometry (GC-MS)
- Gas Chromatography with Flame-Ionization Detection (GC-FID)
- High Performance Liquid Chromatography (HPLC)
- Spectrophotometric analysis
- Total phenols contents (Folin-Ciocalteu assay)
- Antioxidant activity (DPPH method)
- Statistical analysis and experimental design using response surface methodology (Design Expert)

		(°C)	content (%)
Experimental range	30-90	30-70	10-30
etected ompounds	Phenolic compo	unds, chloroge	nic acid, rutin
Activity	Antioxidant activity		
Optimal conditions	Type: scrap, 3 Eutectic solvent: (0 min, 70°C, 29 Choline chloride	

nine (nin)	(°C)	content (%)	Tested variables	Time	e (min) F	requency (Hz)	Solvent/solid ratio (mL/g)
30-90	30-70	10-30	Experimental range	1	5-45	30-70	300-700
Phenolic compou	unds, chlorogeni	c acid, rutin	Detected compounds	Phe	•	ds, chlorogenic nicotine	acid, rutin,
Anti	oxidant activity		Activity		Antio	xidant activity	
			Optimal conditions	•	o: 41 Hz, 3 min,	Dust: 73 Hz, 15 min,	Midrib: 40 Hz, 41 min,
Type: scrap, 30 Eutectic solvent: C	min, 70°C, 29.99 holine chloride:			692	2 mL/g	700 mL/g	689 mL/g
RITCICAL C (SC-C	_	ACTION	ULTRASC	DUND)-ASSIST (UAE		RACTION
Pressure (bar)	Temperature (°C)	e Time (min)	Tested variables				ethanol-water
100-300	40-80	5-120		Time (min)	Temperature (°C)	Solvent/solid ratio (mL/g)	ratio (%)
Fatty acids, nicoti	ine, volatile orga	anic compounds	Experimental range	30-90	30-70	10-30	40-80

HIGH VOLTAGE ELECTRIC DISCHARGE-

ASSISTED EXTRACTION (HVED)

SUPERCRITCICAL CO ₂ EXTRACTION (SC-CO ₂)					
Tested variables	Pressure (bar)	Temperature (°C)	Time (min)		
Experimental	100-300	40-80	5-120		

Type: scrap, 120 min, 300 bar and 61.22 °C

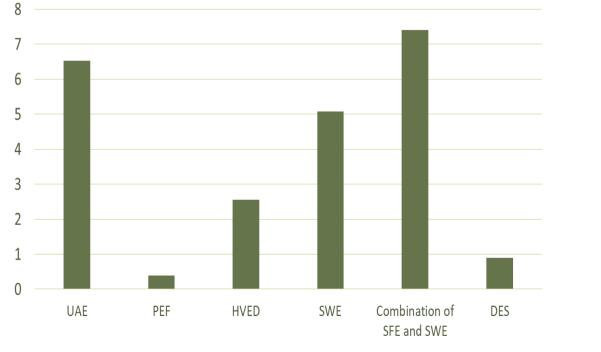
conditions for

SUBCRITICAL WATER EXTRACTION (SWE)

Time (min)	Temperatur e (°C)	Solvent/s (mL	_
5-25	150-250	10-30	
Phenolic compounds, carbohydrates, chlorogenic acid, rutin, nicotine, 3,4 DHBA, nicotinic acid, nicotinamide, 5-HMF, furfural and 5-MF			
Antioxidant activity			
23 mir	n, 2	0 min,	Midrib: 150 °C, 25 min, 30 mL/g
	5-25 Phenolic co acid, ruti nicotii Scrap: 15 23 mir	Imme (min) e (°C) 5-25 150-250 Phenolic compounds, carbacid, rutin, nicotine, 3,4 acid, rutin, nicotine, 3,4 nicotinamide, 5-HMF, Antioxidant Scrap: 150 °C, Dus 23 min, 2	Time (min)e (°C)(ml5-25150-25010-Phenolic compounds, carbohydrates, c acid, rutin, nicotine, 3,4 DHBA, nicot nicotinamide, 5-HMF, furfural and Antioxidant activityScrap: 150 °C, 23 min,Dust: 160 °C, 20 min,

conditions

Optimal


Detected

compounds

range

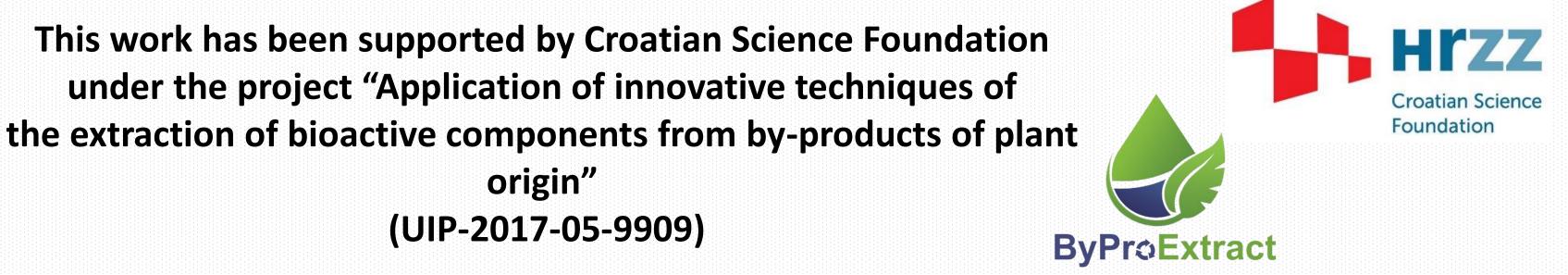
Detected compounds	Phenolic compounds, chlorogenic acid, rutin, solanesol, caffeic acid, nicotine, volatile organic compounds, neophytadiene, 4,8,13-duvatriene-1,3- diol					
Activity	, ,	Antioxidant activity				
Optimal	Scrap: 46.69 °C,	Dust: 53.59 °C,	Midrib: 69.27			

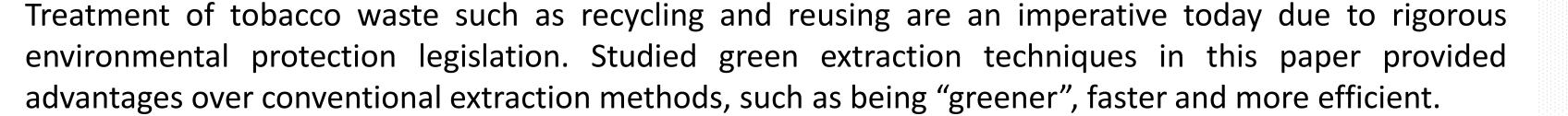
38.31 min,

°C, 38.31 min,

polar compounds	10 mL/g,	10 mL/g,	11 mL/g,
	40% ethanol-	55.43%	44.83%
	water	ethanol-water	ethanol-water
	ratio	ratio	ratio
Optimal conditions for non-polar compounds	Scrap: 70 °C, 50 min, 12.74 mL/g	Dust: 70 °C, 45 min, 10 mL/g	Midrib: 70 °C, 20.19 min, 10 mL/g

15.19 min,


CONCLUSIONS


Figure 1. Comparison of different methods in extraction of bioactive compounds from tobacco waste

Results showed that supercritical CO₂ extraction has advantages in extracting fatty acids and volatile organic compounds. Subcritical water extraction enabled high extraction yield, but some degradation products (furfurals) occurred on higher temperatures (above 200 °C). Ultrasound assisted extraction and high voltage electric discharge assisted extraction provided satisfying concentration of phenolic compounds (chlorogenic, acid and rutin). All tobacco waste types contained similar compounds as leaf blend but in lower concentrations.

ACKNOWLEDGEMENT

This work has been supported by Croatian Science Foundation under the project "Application of innovative techniques of

