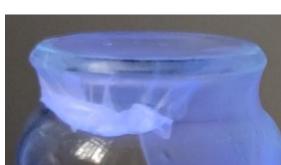


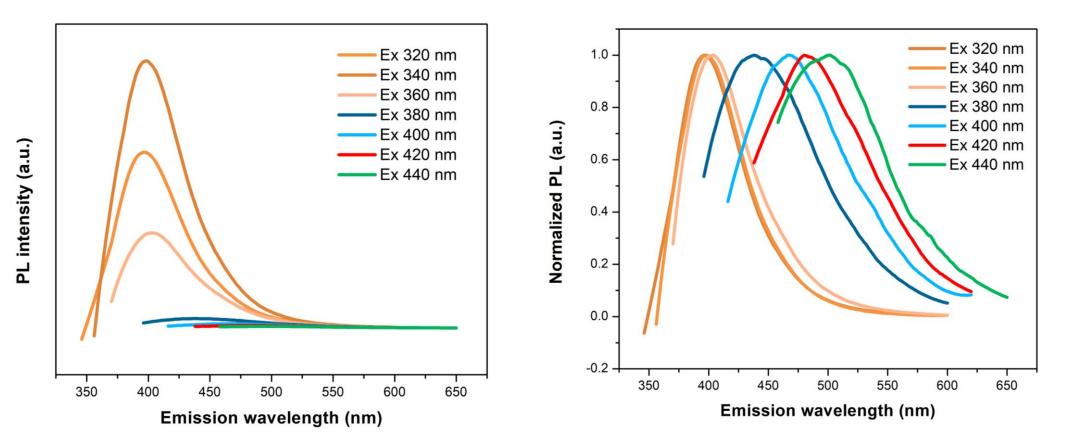
26th International Congress of Chemical and Process Engineering Prague, Czech Republic, 21-25 August 2022



Preparation of Amino Acid-Functionalized Carbon Quantum Dots from Citric Acid – Efficient Fluorescent Nanoprobe for Selective Detection of Fe³⁺ **Ions in Model Systems and in Well Water Samples**

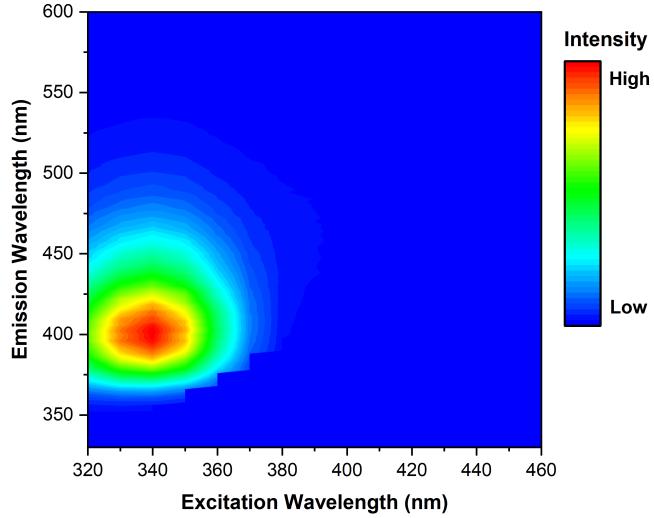
Silvija Šafranko^{1,*}, Kristina Janđel², Monika Kovačević², Maja Dutour Sikirić³, Šimun Mandić⁴, Aleksandar Széchenyi 5, Ivica Strelec¹, Stela Jokić¹

¹Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; tel. +385 31 224 348, e-mail: silvija.safranko@ptfos.hr; ²Department of Chemistry, University of Osijek, Ulica cara Hadrijana 8/A, 31000 Osijek, Croatia; ³Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; ⁴Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; ⁵Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary

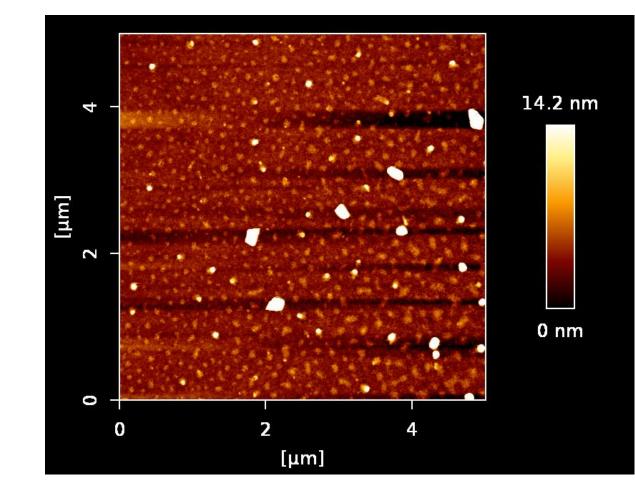


MATERIALS AND METHODS

Carbon quantum dots (CQDs) belong to a group of new and efficient carbon photoluminescent nanomaterials that have attracted the attention of many scientists over the past decade, especially due to their excellent chemical and optical properties. Their chemical stability, biocompatibility/low toxicity, water solubility and optical efficiency represent a huge potential for a wide range of applications in biomedical research and nanotechnology. This study presents a simple, inexpensive, environmentally friendly and green synthesis of N-doped carbon quantum dots from citric acid, and six different amino acids (Leu, Trp, Arg, Lys, Ala, His). Firstly, the differences between the chemical, structural and optical properties were studied. The incorporation of nitrogen into the CQDs obtained from citric acid and amino acids has led to an increase in quantum yield (QY) and in general, improvement in the performance and sensitivity of nanoprobes, compared to the blank system (without the addition of amino acids). The prepared N-doped CQDs demonstrated selectivity toward Fe³⁺ ions, showed great stability in aqueous/high ionic media and similar optical properties, and were used as nanoprobe for Fe³⁺ ion detection in model systems, as well as in well water samples.

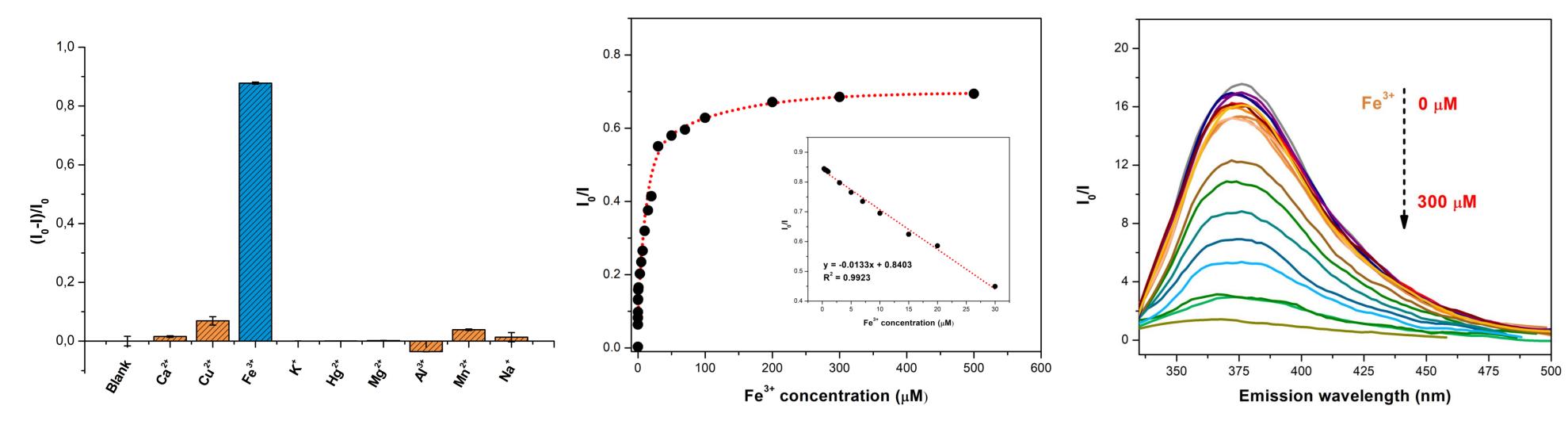

CHEMICAL/STRUCTURAL/OPTICAL CHARACTERIZATION

Prepared sample	Quantum yield (QY; %)	Maximum excitation wavelength (nm)	Maximum emission wavelength (nm)	
Blank	2.02	340	430	
Leucin	36.43	343	406	
Triptofan	33.17	367	423	
Arginin	23.92	335	415	
Lizin	16.94	340	408	
Alanin	16.42	340	398	
Histidin	12.97	335	401	



		Parameters	Conditions		
		Temperature	180 °C		
		Time	9 hours		
	Procedure for CQDs preparation	Hydrothermal synthesis; 825 mg of citric acid was dissolved in 15 mL of Milli-Q water, then 175 mg of AA was dissloved in 5 mL Milli-Q water – overall 20 mL of mixture			
	Prepared samples	Blank + [citric acid + Amino acid (Ala, Arg, His, Leu, Lys, Trp)]			

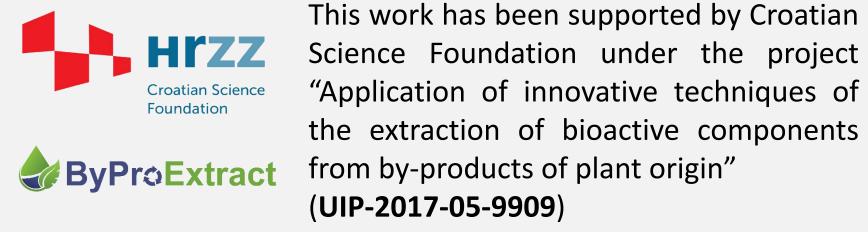
3D contour plot of CQD@Leu


AFM image of CQD@Leu

Prepared CQD@Leu nanoparticles showed great stability in aqueous/high ionic media and good optical properties – maximum emission wavelength of 406 nm with excitation wavelength of 343 nm. With the excellent QY of 36.43%, CQD@Leu showed good potential in sensing of different chemical species.

APPLICATION OF CQD@Leu IN METAL ION SENSING

	Sample	Standard method – determined Fe ³⁺		CODs nanonrohe		Average ± Standard Deviation	Recovery %	RSD %
				1	2			
	16	1338	μg/L	1449.24	1391.08	1420.16 ± 41.12	106.14	2.90
	17	2036	μg/L	1965.73	1989.54	1977.63 ± 16.84	97.13	0.85
	18	4960	μg/L	5121.44	5048.87	5085.15 ± 51.31	102-52	1.00



The developed model was described by an exponential function with a suitable coefficient of determination of $R^2 = 0.9810$, while the linear range was determined in the concentration range from 0.3 μ mol dm⁻³ to 30 μ mol dm⁻³ with a determined limit of detection of LOD = 1.76 \pm 0.01 μ mol dm⁻³ and limit of quantification of LOQ = 5.89 \pm 0.04 μ mol dm⁻³ The satiscatory results were obtained for the Fe³⁺ ion detection in well water samples (compared to the standard methods).

This work reports carbon quantum dots (CQDs) from citric acid modified with different amino acids, resulting in a successful nitrogen doping of CQDs.

- 1. Prepared amino acid-funtionalized CQDs possessed good sensing properties, satisfactory optical and chemical properties.
- 2. The samples of CQDs were prepared at temperature of 180°C during 9 hours.
- 3. The highest determined quantum yield was achieved with the CQD@Leu (QY=36.43%). The Blank sample demonstrated the lowest quantum yield (QY=2.02%).

ACKNOWLEDGEMENT

4. The maximum emission wavelength of CQD@Leu is determined at 406 nm, when excited at 340 nm. 5. The CQD@Leu showed outstanding selectivity toward Fe³⁺ ions, among the all tested metal ions and prepared samples. 6. The developed model was described by an exponential function with a suitable coefficient of determination of $R^2 = 0.9810$. 7. The model was tested with well water samples and were compared with standard methods of Fe³⁺ ions detection in water monitoring industry. The presented study may represent a novel and useful approach for efficient utilization of the waste for practical applications, including those in analytical chemistry and environmental monitoring.