# The Preparation of N-doped Carbon Quantum Dots from Citric Acid and Citrus *clementina* Peel – The Application in Iron(III) Detection in Herbs and Spices

Silvija Šafranko<sup>1</sup>, Šimun Mandić<sup>2</sup>, <u>Stela Jokić<sup>1</sup></u> <sup>1</sup>Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia <sup>2</sup>Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia stela.jokic@ptfos.hr

## ABSTRACT

This study represents a novel investigation of N-doped CQD derived from citric acid and citrus peel for the selective response of Fe<sup>3+</sup> ions in both model and real sample systems. The hydrothermal synthesis of the samples was carried out at temperature of 180° C during 9 hours. The amino acid leucine (Leu, L) has been used as nitrogen dopant in the CQD synthetic procedure, and the CQD@hybrid was obtained as a result of mixing citric acid/citrus peel and Leu before initiating the synthesis. The physico-chemical characterization (AFM, PXRD, dispersibility in water, EDS) od the prepared CQD samples was performed, while optical characterization has shown that quantum yield for the CQD@Leu sample was calculated to be QY=36.43% and for the CQD@hybrid was QY=10.04%. Also, investigation of the excitation-dependent photoluminescence (PL) and influence of the solvents on the PL intensity was also carried out. Finally, selectivity toward metal ions were studied in the presence of CQD@Leu and CQD@hybrid and it was determined that both samples were highly selective toward Fe<sup>3+</sup> ions. Hence, two different models were developed for the detection of Fe<sup>3+</sup> ions in model systems described by exponential functions, and the linear responses were established in the concentration ranges: 1) 0.3  $\mu$ mol dm<sup>-3</sup> to 30  $\mu$ mol dm<sup>-3</sup> ( $R^2$ =0.9982) with a determined limit of detection of LOD =  $1.77 \pm 0.01 \mu$ mol dm<sup>-3</sup> and limit of quantification of LOQ = 5.88  $\pm$  0.04 µmol dm<sup>-3</sup> for CQD@Leu; 2) 0.5 µmol dm<sup>-3</sup> to 15  $\mu$ mol dm<sup>-3</sup> ( $R^2$ =0.9851) with a determined limit of detection of LOD = 2.72 ± 0.39  $\mu$ mol dm<sup>-3</sup> and limit of quantification of LOQ = 9.06 ± 1.29  $\mu$ mol dm<sup>-3</sup> for CQD@hybrid. Moreover, the photoluminescent nanoprobes were successfully used for the determination of Fe<sup>3+</sup> ions in herbs (nettle) and spices (oregano).

## MATERIALS AND METHODS

Carbon quantum dots (CQD) are relatively new class of photoluminescent carbon nanomaterials composed of discrete and quasi-spherical carbon nanoparticles, which due to their outstanding chemical and optical properties, excellent biocompatibility and overall great sensing performance, have attracted the enormous amount of interest in the scientific community. The possibility of facile surface modifications and heteroatom doping for the properties and performance enhancement, CQD have found versatile applications in a wide range of analyses: in biomedicine and pharmacy, water monitoring and food quality control, environmental and pesticide analysis.



| PROCESS OPTIMIZATION OF CQD@hybrid                               |                |          |            |         |  |  |  |  |
|------------------------------------------------------------------|----------------|----------|------------|---------|--|--|--|--|
| PREPARATION                                                      |                |          |            |         |  |  |  |  |
| Table 1. Operating conditions for QY investigation of CQD@hybrid |                |          |            |         |  |  |  |  |
|                                                                  |                | Level    |            |         |  |  |  |  |
| Independant variables                                            | Symbol         | Low (-1) | Center (0) | High (+ |  |  |  |  |
| Temperature (°C)                                                 | X <sub>1</sub> | 130      | 175        | 220     |  |  |  |  |
| <b>Reaction time (hours)</b>                                     | X <sub>2</sub> | 5        | 10         | 15      |  |  |  |  |

Table 2. CCD plan for QY investigation of CQD@hybrid

|     | Variable 1  | Variable 2           | <b>Response</b> 2 |  |
|-----|-------------|----------------------|-------------------|--|
| Run | Temperature | <b>Reaction time</b> | QY                |  |
|     | °C          | hours                | %                 |  |
| 1   | 160         | 9                    | 2.03              |  |
| 2   | 180         | 9                    | 12.79             |  |
| 3   | 200         | 9                    | 16.30             |  |
| 4   | 180         | 6                    | 7.82              |  |
| 5   | 180         | 9                    | 12.47             |  |
| 6   | 200         | 6                    | 14.10             |  |
| 7   | 200         | 12                   | 17.04             |  |
| 8   | 160         | 12                   | 2.50              |  |
| 9   | 180         | 9                    | 13.14             |  |
| 10  | 180         | 12                   | 13.75             |  |
| 11  | 160         | 6                    | 1.54              |  |

The Citrus clementina peels were collected from the Dalibor Ujević family farm (Opuzen, Croatia) and were washed with water several times before use





Figure 2. AFM images of (A) CQD@hybrid and (B) CQD@Leu<sub>CITRIC</sub>

The presence of spherical nanoparticles can be seen – height of <15 nm





Figure 3. 2D mapping of excitation/emission (A) CQD@Leu<sub>CITRIC</sub> and (B) CQD@hybrid

Table 3. Analysis of variance (ANOVA) of second-order polynomial model for QY of CQD@hybrid

| Source                      | Sum of Squares | Degree of<br>Freedom (df) | Mean Square | F Value | <i>p</i> -Value <sup>a</sup> |
|-----------------------------|----------------|---------------------------|-------------|---------|------------------------------|
| Model                       | 328.77         | 5                         | 65.75       | 45.51   | 0.0004                       |
| X <sub>1</sub> -Temperature | 285.07         | 1                         | 285.07      | 197.31  | < 0.0001                     |
| X <sub>2</sub> -Time        | 16.07          | 1                         | 16.07       | 11.12   | 0.0207                       |
| $X_1X_2$                    | 0.9919         | 1                         | 0.9919      | 0.6865  | 0.4451                       |
| X <sub>1</sub> <sup>2</sup> | 18.13          | 1                         | 18.13       | 12.55   | 0.0165                       |
| X <sub>2</sub> <sup>2</sup> | 2.81           | 1                         | 2.81        | 1.95    | 0.2217                       |
| Residual                    | 7.22           | 5                         | 1.44        |         |                              |
| Lack of fit                 | 6.75           | 3                         | 2.25        | 9.4     | 0.0976                       |
| Pure error                  | 0.4783         | 2                         | 0.2391      |         |                              |
| Total                       | 336            | 10                        |             |         |                              |
| R <sup>2</sup>              | 0.9785         |                           |             |         |                              |



Figure 1. 2D diagrams of (A) influence of temperature and (B) infuence of reaction time on QY of CQD@hybrid sample. The illustration of 3D diagram shown in (C) shows the influence of both variables on the QY.







**November 30<sup>th</sup> 2022** December 2<sup>nd</sup> 2022

Hotel Academia Zagreb, Croatia



### Table 4. Elemental analysis of as-prepared CQDs

|                           | Weight percentage (%) |       |       | Atomic percentage (%) |       |       |  |
|---------------------------|-----------------------|-------|-------|-----------------------|-------|-------|--|
| Sample                    | C (%)                 | O (%) | N (%) | C (%)                 | O (%) | N (%) |  |
| CQD@Leu <sub>citric</sub> | 40.48                 | 46.44 | 1.60  | 45.11                 | 38.85 | 1.53  |  |
| CQD@hybrid                | 88.72                 | 38.64 | 13.11 | 63.20                 | 20.66 | 8.01  |  |

### **DETECTION OF Fe(III) IN NETTLE AND OREGANO**

#### **Table 5**. Determination of Fe(III) in nettle and oregano samples – CQD@Leu<sub>CITRIC</sub>

| Sample            | Fe(III) determined<br>by KSCN method<br>(mg/kg) | Experimental with CQDs (mg/kg) |                |         |       | Recovery (%) | RSD (%) |
|-------------------|-------------------------------------------------|--------------------------------|----------------|---------|-------|--------------|---------|
|                   |                                                 | 1. measurement                 | 2. measurement | Average | StDev |              |         |
| Nettle<br>sample  | 95.69 ± 0.04                                    | 94.62                          | 81.04          | 87.83   | 9.60  | 91.80        | 10.93   |
| Oregano<br>sample | 82.35 ± 0.01                                    | 119.56                         | 111.41         | 115.49  | 5.77  | 140.24       | 4.99    |

#### **Table 6**. Determination of Fe(III) in nettle and oregano samples – CQD@hybrid

| Sample            | Fe(III) determined by<br>KSCN method<br>(mg/kg) | Experimental with CQDs (mg/kg) |                |         |       | Recovery (%) | RSD (%) |
|-------------------|-------------------------------------------------|--------------------------------|----------------|---------|-------|--------------|---------|
|                   |                                                 | 1. measurement                 | 2. measurement | Average | StDev |              |         |
| Nettle<br>sample  | 95.69 ± 0.04                                    | 69.65                          | 78.96          | 74.31   | 6.58  | 77.67        | 8.86    |
| Oregano<br>sample | 82.35 ± 0.01                                    | 75.48                          | 82.80          | 79.14   | 5.18  | 96.10        | 6.54    |

**Croatian Science** 

**ByProExtract** 

This work has been supported by Croatian Science Foundation under the project "Application of innovative techniques of the extraction of bioactive components from by-products of plant origin" (**UIP-2017-05-9909**)