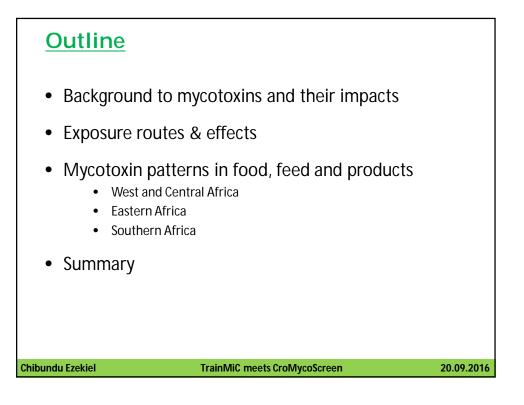
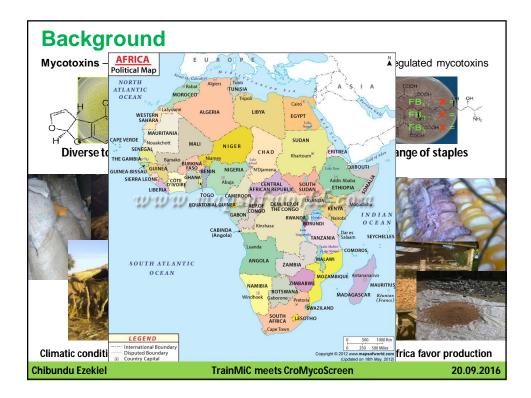
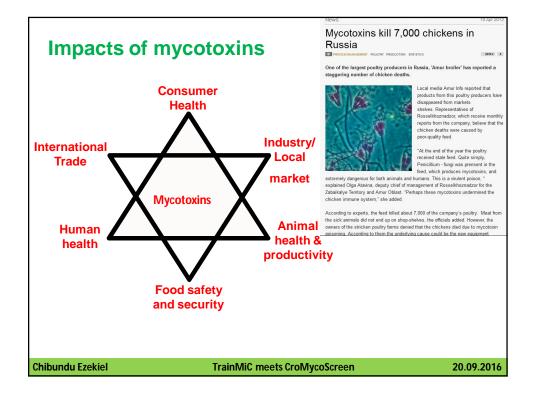
Mycotoxin Exposure Patterns in Africa: *single to multiple mycotoxin occurrences*

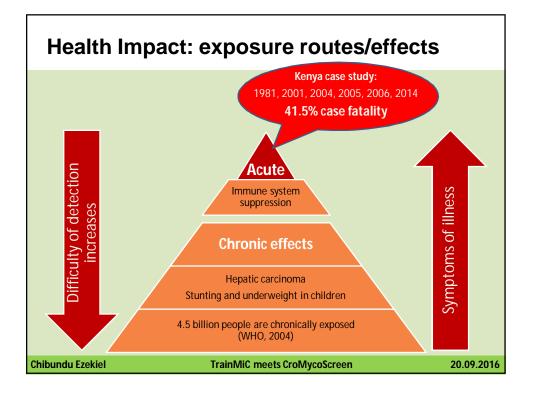
Dr. Chibundu N. Ezekiel

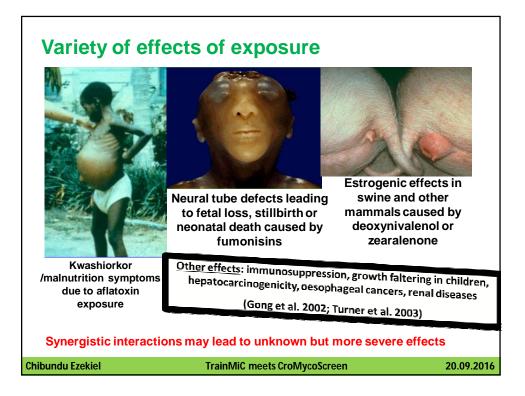
Centre for Analytical Chemistry, Department of Agrobiotechnology (IFA Tulln), University of Natural Resources & Life Sciences Vienna (BOKU), Austria.

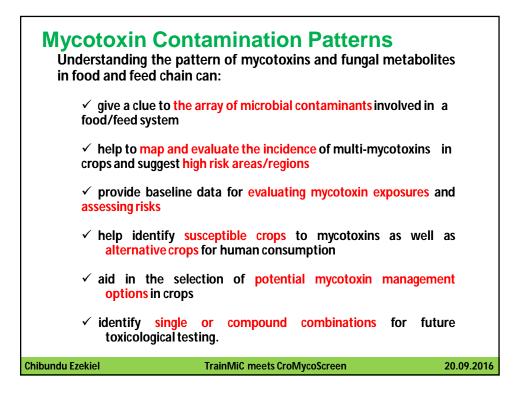

> Presented @

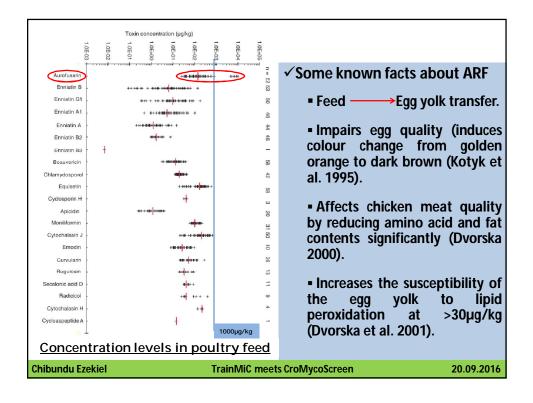

TrainMic meets CroMycoScreen Workshop University of Josip Juraj Strossmayer in Osijek, Faculty of Food Technology, 19-20th September 2016.

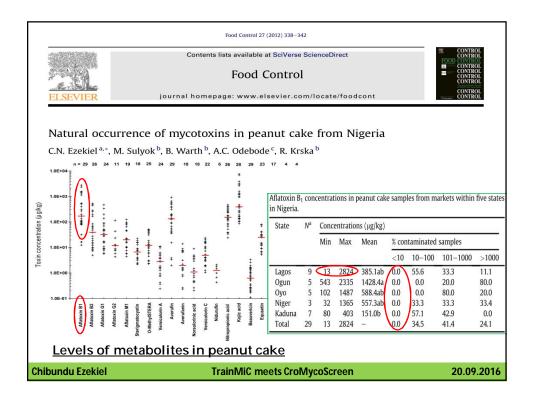

Chibundu Ezekiel

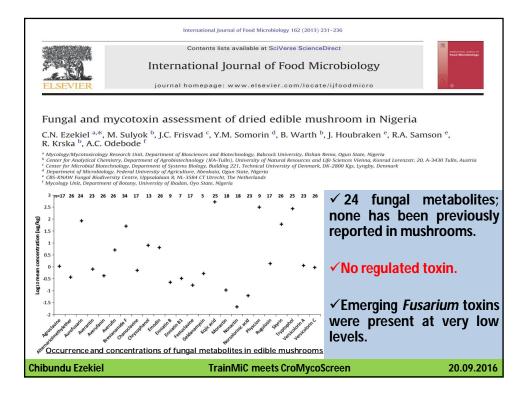

TrainMiC meets CroMycoScreen

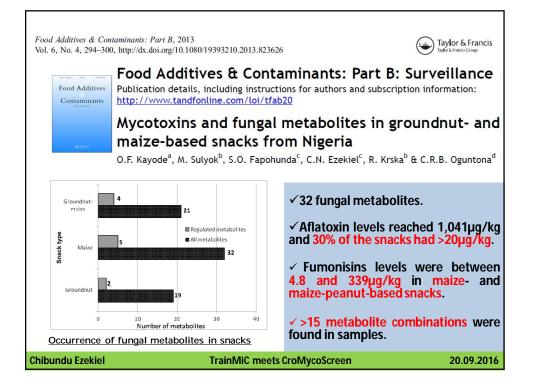

20.09.2016



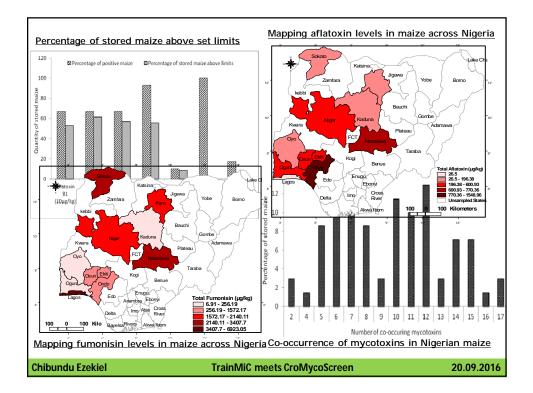



Evidence on Association of Aflatoxin Exposure and Child Growth

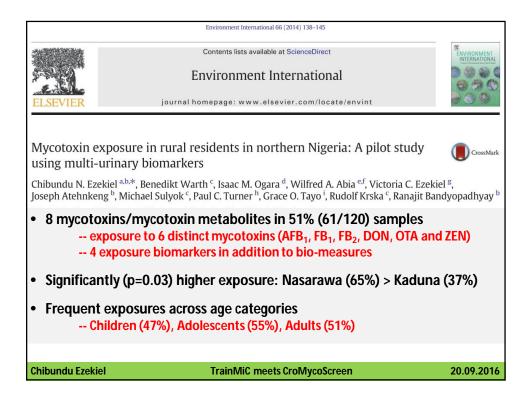

Geography	Findings (correlation)	Reference
Ghana & The Gambia	Exposure during pregnancy and smaller babies during the first weeks of life	Barett (2005), Review
Ghana	Exposure and anemia in pregnancy	Shuaib et al. (2010a)
Ghana	Exposure and low-weight, still birth and pre- term babies	Shuaib et al. (2010b)
Tanzania	Exposure and reduced weight and height among breast fed infants under 6 months	Magoha et al. (2014)
Benin, Togo	Between higher levels of aflatoxins and lower growth rates	Gong et al. (2002)
Togo, Iran, Kenya, UAE	Exposure and stunting in children	Barett (2005), Review
n v	nere is possible association between aflatoxin icronutrient deficiencies (e.g. selenium, fola tamin A and C (Turner et al. 2003; Obuseh et al. 2 014).	te, zinc) and
Chibundu Ezekiel	TrainMiC meets CroMycoScreen	20.09.2016

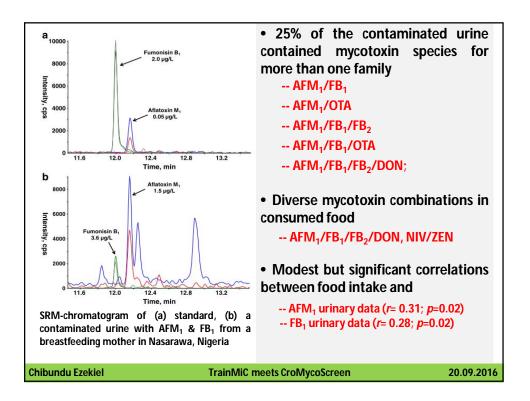


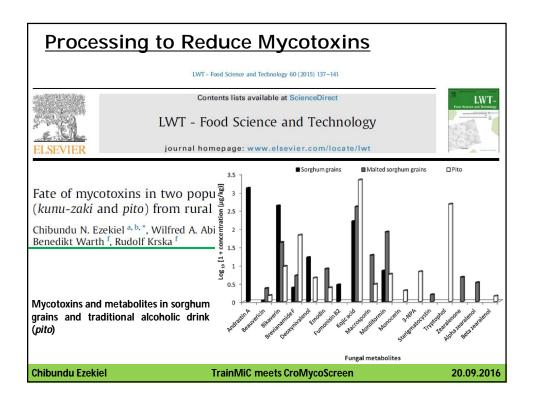
Findir Food Additive Vol. 29, No. Fungal an	ngs es and Contan 8, August 20 ad bacteria	minants 112, 1288–129 I l metabol	99 ites in 1	commer	atter cial poultry B. Warth ^c an	feed fro	m Nigeri		Taylor	(NG) & Francis ancis Group
• 56	crobial are of f	ungal or	igin					20µg/	•	
	are from) are nov		-	urrend		0.3% s	sample	s > 11	mg/kg limit	DON
		el in the	eir occ	tion (µg k	e		•	es > 11	limit	
		el in the	eir occ		e		•		limit	
• 19	are nov	el in the	eir occ	tion (µg k	g ⁻¹)	Chick mash	Number of Broiler finisher	contaminate Grower mash	limit ed feed type Layer mash	es Broiler starter

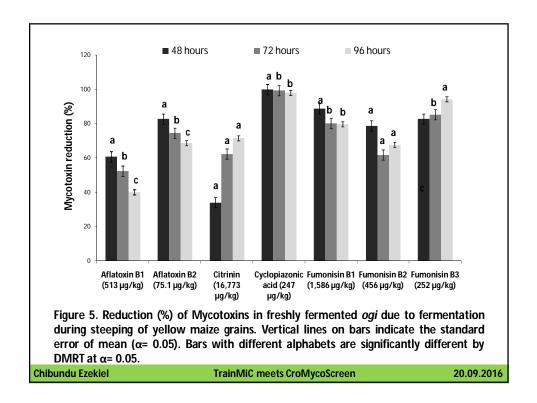


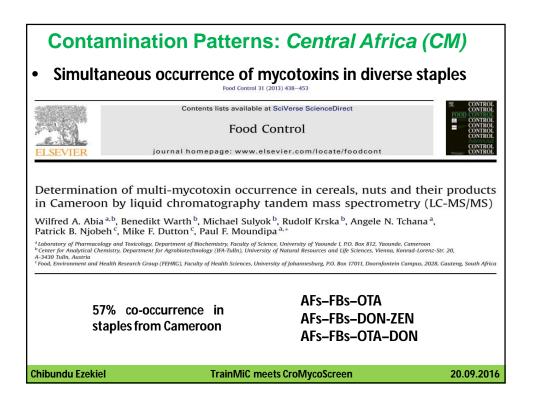
Mycotoxin Res (2014) 30: DOI 10.1007/s12550-014-0								MCOTO-X4
ORIGINAL PAPER								
						_		
T								······································
								red maize (Zea mays, L.)
from five ag	ro-	ecol	ogica	al zo	nes o	of N	ige	ria
Modupeade Adetunji Benedikt Warth • Edu								
Adegoke Bakare · Cy				on itis		Jacguin	Obada	
Occurrence and Concen	tratio	n of Re	e hatelun	and Non	Regulati	od Myc	otoving	s in Stored Maize from Five AEZS ^c of Nigeria
occurrence and concent	uano		guiatou a		-		otoxine	Sin Stored Malze nom nive ALLO of Migena
		- 6			ntration (µ	0 0/		✓ 62 fungal and 4 bacterial
Mycotoxin	Nº	P ^b	Min	Max	Median		SD	
3-nitropropionic acid	59	84.3	6.5	2844	42.5	244 394	530	metabolites; 54 first reports in
Aflatoxin B ₁ Aflatoxin B ₂	47 38	67.1 54.3	0.4 1	6738 644	74 12	394 44	1033 108	
Aflatoxin G ₁	30 11	54.3 15.7	1	264	12	44	83	Nigerian maize.
Anatoxin G ₂	4	5.7	0.7	52	6	16	24	rigerian maize.
Aflatoxin M ₁	34	48.6	1.2	120	5	14.5	23	
AlternarioImethylether	20	28.6	0.04	21	0.6	3	6	
Alternariol	13	18.6	0.8	57	4	10	16	
Beauvericin	55	78.6	0.1	120	1	10	23	
Deoxynivalenol	70	100.0	11	479	49	60	59	✓ The incidence and levels of
Deoxynivalenol-glucoside	7	10.0	0.1	76	0.4	11	29	
Fumonisin B ₁	65	92.9	1.8	10447	1064	1552	1934	fumonisins were higher than
Fumonisin B ₂	59	84.3	12.8	3455	274	442	581	Junionishis were night that
Fumonisin B ₃	59	84.3	6.4	720	107	161	103	those of aflatoxins.
Hydrolysed fumonisin B	37	52.9	0.4	135	0	11	22	those of anatoxins.
Fusaproliferin	3	4.3	57.4	263	243.5	188	114	
Moniliformin Nivalenol	54 38	77.1 54.3	0.8 0.7	899 164	11 6	130 14	221 28	
Nivalenol Ochratoxin A	38	54.3 10.0	0.7	164 580	28	14 111	28	
Ochratoxin-alpha	1	1.4	11	11	20	11	200	
Ochratoxin B	5	7.1	2	26	2	7.5	11	
Sterigmatocystin	26	37.1	0.4	17	0.9	3	5	
Zearalenone	12	17.1	0.4	2044	4	174	589	
Alpha-zearalenol	1	1.4	17	17	17	17	-	
Beta-zearalenol	1	1.4	13	13	13	13	-	_
Chibundu Ezekiel				Tra	inMiC	meets	s Crol	AycoScreen 20.09.2016

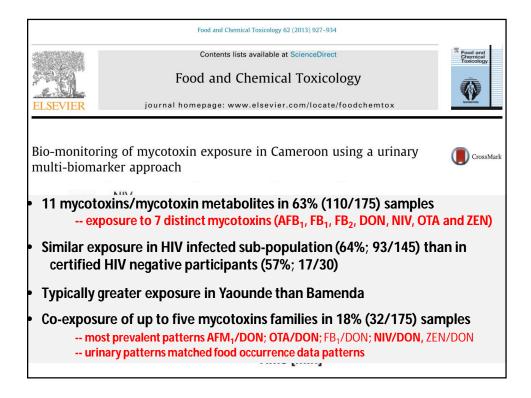

ORIGINZ	AL PA	PER										
Multi-1						onio n	nillet	: (ach	a) and	sesan	ne	
seeds in					егіа							
C. N. Ezek R. Krska	iel • M	I. Sulyol	к·В. Wa	arth •								
	ence	and co	ncentra	tion leve	els of se	elected r	nvcot	oxins ir	n fonio a	nd sesan	ne in Nie	peria
Metabolite ^a		o millet (ne $(n^{\rm b} = 17)$				<u></u>
	$\overline{N^{c}}$	Conce	ntration (µg	g/kg)			N°	Concentr	ation (µg/kg	;)		
		Min	Max	Median	Mean	SD		Min	Max	Median	Mean	SD
AFB1 <	13	0.08	1.4	0.2	0.4	> 0.4	0	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
AFB2	4	0.07	0.1	0.08	0.08	0.02		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
AFG1	4	0.2	2	0.4	0.6	0.6	0	-LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DON	14	3	14	10	9	3	15	8	76	21	28	22
FB1	3	5	43	9	19	21	0	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FB2	2	2 2	7	4 12	4 85	3	0	<lod 0.7</lod 	<lod 38</lod 	<lod 3</lod 	<lod 7</lod 	<lod 12</lod
ZEN TEN-AC	16	2 14	987 1,049	12	235	251 274	15	2	38 40	3 11	16	12
	<i>i</i>	_		_		_			_			
V	′ 52 ι	micro	bial n	netabo	lites i	n fonio	o wh	ile 30	in sesa	ame.		
	Rec	ent a	nalvs	is of 35	i sesa	me fro	m ai	nothe	r state	in Nig	eria sh	owe
v												
v												

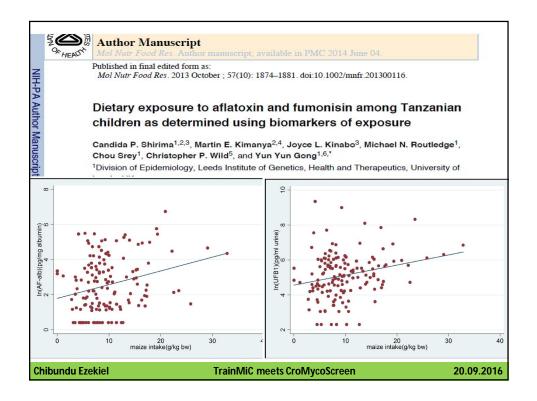

Food Additives	Food Additives & Contaminants: Part A Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/tfac20</u>
Contaminants	Fungal and bacterial metabolites associated with natural contamination of locally processed rice (Oryza sativa L.) in Nigeria
	Abdus-Salaam Rofiat ^a , Francesca Fanelli ^b , Olusegun Atanda ^c , Michael Sulyok ^d , Giuseppe Cozzi ^b , Simona Bavaro ^b , Rudolf Krska ^d , Antonio F. Logrieco ^b & Chibundu N. Ezekiel ^e
Carter	^a Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
Table 2. The incidence	and concentration levels of metabolites in Nigerian rice.

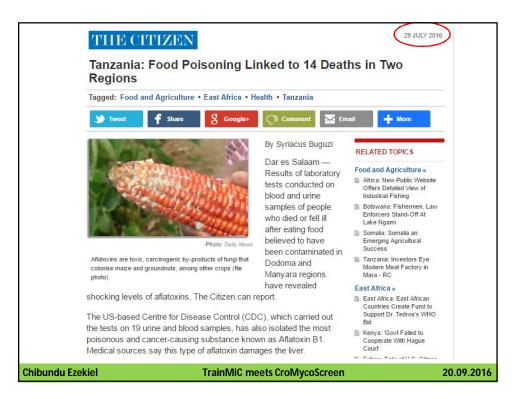

				Cons	centration	(µg/kg)
Group	Metabolite	LOD ^a	Recovery ± SD % ^b	Mean	Median	Maximum
Major mycotoxins and	Aflatoxin B ₁	0.15	94.8 ± 4.1	5.1	3.7	20.2
derivatives	Aflatoxin B ₂	0.2	91.4 ± 4.1	1.62	0.67	6.11
	Aflatoxin G ₁	0.2	93.7 ± 3.8	3.76	3.76	7.21
	Ochratoxin A	0.5	101.3 ± 1.4	1.01	0.97	1.47
	Fumonisin B ₁	3.0	100	18.52	7.22	60.72
	Fumonisin B ₂	1.5	100	8.75	5.48	24.39
	Fumonisin B ₃	2.0	100	5.54	6.97	8.79
	DON	0.5	99.4 ± 7.4	4.08	4.08	5.76
	Nivalenol	0.5	85.5 ± 12	17.1	10.86	42.18
	Zearalenon	0.3	106.4 ± 9.3	55.13	2.1	927.84
	Alpha-zearalenol	0.5	111 ± 7.8	2.54	2.08	7.53
	Beta-zearalenol	0.5	108.5 ± 3.7	3.9	2.84	14.2
	ZON-4-sulphate	0.03	103.8 ± 9.7	7.64	0.15	79.28
hibundu Ezekiel	TrainM	liC meets	CroMycoScreen			20.09.201

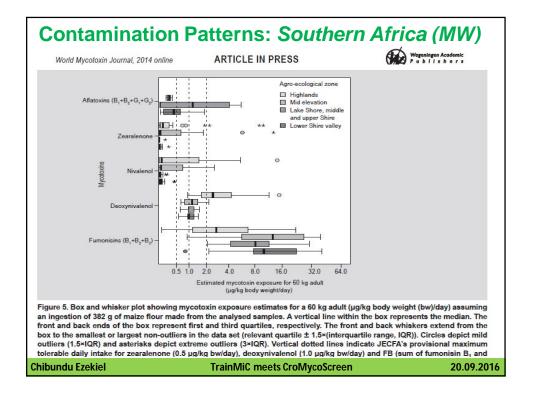

an ± SE icentrations nd-peeled	(µg/kg)		
nd-peeled		Mean \pm SE conc	entrations (µg/kg)
-	Machine- peeled	Discoloured	Non-discoloured
$4a \pm 10.6$	16.9b ± 2.7	95.4a ± 48.8	5.8b ± 0.9
a ± 1.8	$1.8b \pm 0.1$	$28.1a \pm 14.0$	$1.6b \pm 0.2$
a ± 2.3	$11.9a \pm 0.4$	$3.8a \pm 0.6$	$2.1b \pm 0.4$
± 0.9			
9a ± 17.0	25.8b ± 5.6	111.9a ± 55.1	$4.4b \pm 0.9$
9 ± 13.1	-	84.1a ± 31.6	24.9b ± 5.8
		24.5*	46.6 ± 21.1
	-	153.0a ± 133.6	$10.2b \pm 3.2$
	-	55.8a ± 30.0	8.2b ± 2.5
		$3.8a \pm 0.0$	3.8a ± 0.0
c .		68.1a ± 58.8	$18.7b \pm 11.3$
		$47.1a \pm 41.4$	5.90 ± 2.3
		$9.1b \pm 2.0$	$40.1a \pm 12.4$
	-	$24.7a \pm 6.1$	$19.1a \pm 5.5$
20.000-00-00-00-00-00-00-00-00-00-00-00-0	erscript alphabe	ts <mark>in a row ar</mark> e sij	gnificantly differe
samples.			
AFB, AFB	B., AFG, and A	FG ₂ .	
	a ± 1.8 a ± 2.3 ± 0.9 9a ± 17.0 9 ± 13.1	a ± 1.8 1.8b ± 0.1 a ± 2.3 11.9a ± 0.4 ± 0.9 - 9a ± 17.0 25.8b ± 5.6 9 ± 13.1 - - - - - - - - - - - - - -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


	s Technol (2014) 239:287– /s00217-014-2221-0	296				
ORIGINA	AL PAPER					
CONSUI M. C. Ade A. O. Dipe	Dution of myco mers in five ag tuniji · O. O. Atanda · olu · S. V. A. Uzochuk assessment of aflatoxin e	C. N. Ezekiel	gical zone		maize	
AEZ	^a Dietary AFB ₁ exposure	^b Annual HCC cas	ses	'Estimated liver	^d Cancer incidence	°DALY
	(ng/kg body weight/day)	HBsAg-negative	HBsAg-positive	cancer risk (cases/100, 000 population/year)	attributable to dietary aflatoxin (%)	
SS	0.91-465.32	0.0091-4.65	0.27-139.60	0.27-139.60	4.21-2,147.63	3.52-1,821.78
NGS	0.38-654.22	0.0038-6.54	0.11-196.26	0.11-196.26	1.75-3,019.46	1.44-2,561.19
SGS	2.43-1,869.35	0.024-18.69	0.73-560.80	0.73-560.80	11.22-8,627.78	9.53-7,318.44
DS	0.64-6,401.1	0.0064-64.01	0.20-1,920.33	0.02-1,920.33	2.93-29,543.54	2.61-25,060.31
HF	22.63-4,90.57	0.226-4.91	6.79-1,47.17	6.79-147.17	104.44-2,264.17	88.61-1,920.57
NATIONAL	26.99-9,880.56	0.2693-98.80	1.62-592.83	8.10-2,964.16	124.55-45,602.58	126.85-38,682.29
^a The value v global enviro in the various ^b The value v and (0.3) for ^c Estimated I ^d The value v	was calculated as reported HBsAg-positive iver cancer risk = HBsAg- was calculated as reported	by Liu and Wu [4]- (GEMS)/food cons by Abt Associates positive by Liu and Wu [4]		ze consumed (57 g/perso liets database [19] × con]—dietary exposure × th r cancer risk per 100,000	n/day) in Nigeria as ada accentration of aflatoxins a HCC potency (0.01) :	in the stored grains for HBsAg-negative
Nigeria (6.5 J	per 100,000) estimated for	Nigeria by Global	Burden of Disease			



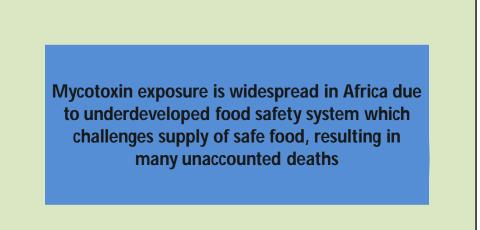


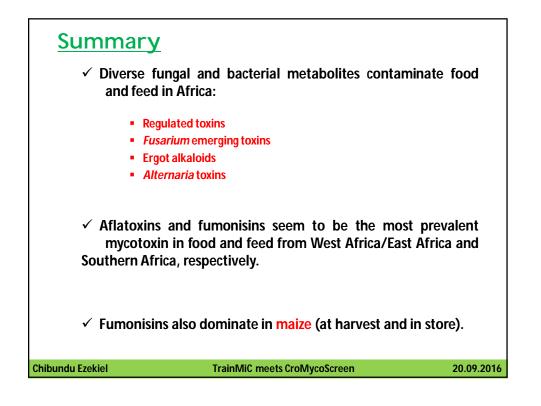

HFM 207 (27-2141) 1418 (75-3716)	sampling period 1 HFB 60 (212–918)	WH	mean	HFM	sampling period 2: 20 HFB	WH	mean
	60 (212-918)						
	60 (212-918)						
1418 (75-3716)		275(27-2741)	181	612(27-2411)	161(27-1084)	452 (218-3842)	408
	468 (20-1418)	2102 (112-5412)	1329	2601 (20-4030)	665 (314-2841)	2949 (20-3212)	2072
1157 (112-2268)	370 (50-843)	965 (75-2882)	831	2555 (10-2890)	663 (50-915)	1742 (112-1846)	1653
398 (50-1442)	156 (75-482)	357 (65-412)	303	993 (112-2180)	604 (132-864)	376 (50-698)	657
22 (6-184)	59 (6-345)	26 (6-195)	35	100 (6-645)	96 (6-216)	47 (6-210)	81
7 (2-108)	8 (2-215)	6 (2-85)	7	23 (2-225)	14 (2-120)	29 (2-75)	22
61 (75-279)	58 (27-228)	65 (85-262)	61	113 (35-334)	111 (27-242)	86 (55-286)	103
44 (65-231)	36 (30-187)	47 (54-170)	42	71 (30-115)	62 (30-176)	46 (30-186)	60
20 (1-94)	15 (1-137)	25 (1-145)	20	48 (1-84)	44 (1-118)	55 (1-181)	49
39 (15-412)	33 (15-384)	35 (15-264)	35	69 (15-312)	66 (15-284)	51 (15-385)	62
ns	ns	ns	ns	5 (0.3-12)	3 (0.3-10)	4 (0.3-4)	4
ns	ns	ns	ns	26 (6-125)	22 (6-77)	22 (6-110)	23
12 (6-194)	2 (6-95)	5 (6-193)	6	10 (6-125)	1 (6-32)	10 (6-141)	7
7 (25-184)	3 (25-96)	3 (25-72)	4	4 (25-76)	2 (25-46)	4 (25-44)	4
	398 (50-142) 22 (6-184) 7 (2-108) 61 (75-279) 44 (65-231) 20 (1-94) 39 (15-412) ns ns 12 (6-194) 7 (25-184)	$\begin{array}{cccccccc} 398 & (50-1442) & 156 & (75-482) \\ 22 & (6-184) & 59 & (6-345) \\ 7 & (2-108) & 8 & (2-215) \\ 61 & (75-279) & 58 & (27-228) \\ 44 & (65-231) & 36 & (30-187) \\ 20 & (1-94) & 15 & (1-137) \\ 39 & (15-412) & 33 & (15-384) \\ \hline \\ ns & ns & ns \\ ns & ns \\ 12 & (6-194) & 2 & (6-95) \\ 7 & (25-184) & 3 & (25-96) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

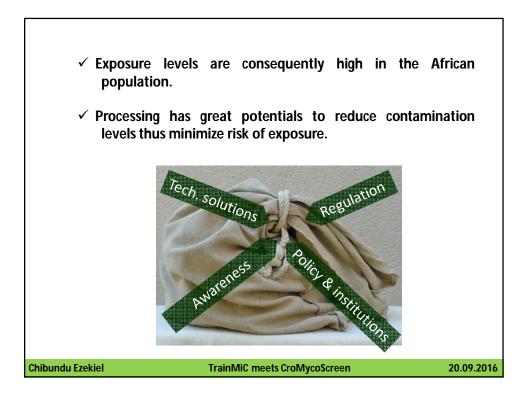

Г

ELSI	UIL. EVIER		journal he	Contents lists availal Food C omepage: www.els		odcont		CONTR CONTR CONTR CONTR CONTR CONTR CONTR CONTR	DL DL DL DL DL DL
mai	ze base	d comple	ementar	y foods in Ro	valenol and fun mbo, Northern Iagoha ^c , Danstan H	Tanzania		Cross M	ark
Brun ^a School ^b Tanzan Gable 1 Contamination level	o De Meu of Life Sciences, a Food and Dri s and occurr	Ilenaer ^d , Pa Nelson Mandela AJ ugs Authority, Dar e ences of mycoto	atrick Kols frican Institution s Salaam, Tanzan oxins in maize	teren ^e , Yun Yun (of Science and Technology, P.O ia based flour.	Gong ^f			enol and fur	nonsins in the c
Brune * School	D De Meu of Life Sciences, a Food and Dru	Ilenaer ^d , Pa Nelson Mandela AJ ugs Authority, Dar e ences of mycoto	atrick Kols frican Institution s Salaam, Tanzan oxins in maize	teren ^e , Yun Yun (of Science and Technology, PO ita based flour. • (%) at different	Gong ^f . Box 447, Arusha, Tanzania Table 3 Co-occurrence and lev.	els of aflatoxins Co-occurrence	, deoxynival		nonsins in the c
Brune ^a School ^b Tanzan able 1 ontamination level Mycotoxin	D De Meu of Life Sciences, a Food and Dru s and occurr Level (µg) Median	Allenaer ^d , Pa Nelson Mandela Ay ugs Authority, Dar ences of mycoto [kg) Range	atrick Kols frican Institution s Salaam, Tanzan oxins in maize Occurrence ranges (µg/ >LoD	teren ^e , Yun Yun (of Science and Technology, BO ia based flour. (%) at different kg) >ML	Gong ^f . Box 447, Arusha, Tanzania Table 3 Co-occurrence and leve contaminated flour.	els of aflatoxins	, deoxynival Range (µg/ Total		
Brun ^a School ^b Tanzan able 1 Contamination level	o De Meu of Life Sciences, a Food and Dru s and occurr Level (µg)	Ilenaer ^d , Pa Nelson Mandela AJ ugs Authority, Dar e ences of mycoto (kg)	atrick Kols frican Institution s Salaam, Tanzan exins in maize Occurrence ranges (µg/	teren ^e , Yun Yun (of Science and Technology, BO ia based flour. (%) at different kg)	Gong f Back 447, Arusha, Tanzania Table 3 Co-occurrence and leve contaminated flour. Mycotoxins Afaltoxins with both deoxynivalenol and furmonisms Aflatoxins with	els of aflatoxins Co-occurrence (%)	, deoxynival Range (µg/ Total	kg) Total fumonisins 94–702	Deoxynivalenol 57–459
Brunn * Statool, * Tanzan able 1 ontamination level Mycotoxin Aflatoxin B1 Total aflatoxins Deoxynivalenol pumonisins B1 Total fumonisins oD, Limit of detecti	b De Metu of Life Sciences, a Food and Dru s and occurr Level (µgg) Median 1.27 0.91 119 329 326 7 onn, 0.53 for 53 µggkg f	Lilenaer ^d , Pa Nelson Mandek A Jugs Authority, Dar e ences of mycoto (kg) Range 0.53-364 0.11-386 0.57-825 57-1672 63-2284 AFB1, 0.15 for A AFB1, 0.15 for A	Atrick Kols frican Institution : s Salaam, Tanzan oxins in maize Occurrence ranges (µg/ >LoD 24 32 44 80 83 84 80 85 84 84 85 85 85 85 85 85 85 85 85 85	teren ^e , Yun Yun (of Science and Technology, PO ia based flour. (%) at different kg) >ML 5 5 5 2 5 5 5 5 5 5 5	Cong f Box 447, Arusha, Tanzania Table 3 Co-occurrence and lev contaminated flour. Mycotoxins Afaltoxins with both deoxynivalenol and furmonisins	els of aflatoxins Co-occurrence (%)	, deoxynival Range (µg/ Total aflatoxins 0.12-0.63	kg) Total fumonisins 94–702	Deoxynivalenol

Contamination Patterns: Southern Africa (SA) Article FOOD CHEMISTRY


pubs.acs.org/JAFC


Table 2. Contamination Levels of Agriculturally Important Mycotoxins in Good (n = 54) and Moldy (n = 38) Maize from Centane Region, Former Transkei


				good	maize			moldy	maize	
toxin	recovery (%)	LOD^{a} ($\mu g/kg$)	% positive	$mean^{b} \pm sd^{c}$ ($\mu g/kg$)	median ^b (µg/kg)	range ^b (μ g/kg)	% positive	$\frac{\text{mean}^b \pm \text{sd}^c}{(\mu \text{g}/\text{kg})}$	median ^b (µg/kg)	$range^b$ ($\mu g/kg$)
					IAC Cleanup	Method				
FB ₁	93	3.9	100	2083 ± 3630	848	56-14990	100	27640 ± 38970	14940	514- 190100
FB ₂	95	3.7	100	927 ± 1565	299	38-6444	100	10580 ± 13810	5792	222-6484
DON	71	3.6	6	12 ± 2	12	10-14	11	14 ± 8	11	7.5-25
ZEN	60	1.5	32	108 ± 185	29	4.2-675	61	111 ± 167	23	1.6-614
OTA	79	3.6	0				0			
AFB ₁	72	1.2	0				0			
					Dilute-and-Sho	ot Method				
FB ₁	55	3	93	2764 ± 3584	1405	11-17120	100	35980 ± 41790	18330	927- 178800
FB ₂	58	1.5	93	1050 ± 1472	429	7.9-7680	100	14140 ± 17030	6810	314-7468
FB ₃	66	1	93	192 ± 268	75	0.5-1312	100	2438 ± 2739	1355	90-11280
DON	125	0.8	100	4.7 ± 2.1	4.3	2.2-14	100	5.8 ± 2.6	5.2	1.1-12
ZEN	95	0.3	39	44 ± 88	4.1	0.6-329	74	184 ± 420	11	0.1-1648
OTA	92	0.4	0				0			
AFB ₁	33	0.3	0				0			
Limit o	of detection.	^b Mean/med	lian/range of	of positive sample	s. ^c Standard d	eviation.				
	i detection.	Weall/ met	han/ lange (or positive sample	s. Standard d	eviation.				
Chibu	indu Ezek	iel		Trai	inMiC mee	ts CroMvc	oScreer	1	2	0.09.201

ELSEVIE	R		Food and	d Chemi	ical Toxic ical Toxic	cology	tox	Food and Demiced Toxicology	
subsiste	e mycotox ence farme Shephard ª.ª needer ª, Mic	ers in th . Hester-M	e former Mari Burger	Transke . Lucia Ga	i, South A mbacorta ^b .	frica Yun Yun Goi	ng ^{c,1} , Rudolf	Citoss	
ble 1 inary biomarker:	s determined by LC the corresponding l	LOD. Values in p	parentheses are ng		nducted by Univer	sity of Leeds and I	SPA. Samples with	no biomarker det	ected v
ble 1 inary biomarker:	s determined by LC	LOD. Values in p			nducted by Univers	sity of Leeds and I	SPA. Samples with	no biomarker det OTA	ected v
ole 1 nary biomarkers igned a level of	s determined by LC the corresponding l University of Lee FB ₁	LOD. Values in p ds DON	Darentheses are ng ISPA FB1	JON	α-ZOL	β-ZOL	ZEA	OTA	AFM
le 1 hary biomarkers gned a level of Recovery (%)	s determined by LC the corresponding I University of Lee	LOD. Values in p ds	oarentheses are ng ISPA	/mL					
le 1 hary biomarker: gned a level of Recovery (%) & Positive	s determined by LC the corresponding I University of Lee FB ₁ n.a. ^a	LOD. Values in p ds DON n.a.	ISPA FB ₁ 61	DON 77	α-ZOL 72	β-ZOL 83	ZEA98	OTA 61 98	AFN 95
le 1 nary biomarker: igned a level of Recovery (%) & Positive	s determined by LC the corresponding I University of Lee FB ₁ n.a. ³ 87	LOD. Values in p ds DON n.a. 100	ISPA FB1 61 96	DON 77 87	α-ZOL 72 92	β-ZOL 83 75	ZEA 98 100	OTA 61	AFN 95
ole 1 nary biomarkers igned a level of Recovery (%) % Positive Mean ± SD ^b (ng/mg	s determined by LC the corresponding I University of Leev FB ₁ 0.342 \pm 0.466 (0.185 \pm 0.236) ^c 0.176 (0.103) ^c	LOD. Values in p ds DON n.a. 100 20.4 ± 49.4 (9.9 ± 15.1) 8.95 (4.97)	ISPA FB1 61 96 1.52 ± 2.17	DON 77 87 11.3 ± 27.1	α-ZOL 72 92 0.614 ± 1.91 (0.247 ± 0.590) 0.063 (0.030)	β-ZOL 83 75 0.702 ± 2.95	ZEA 98 100 0.529 ± 1.60	OTA 61 98 0.041 ± 0.086	AFN 95
le 1 nary biomarker: graed a level of Recovery (%) & Positive Wean ±SD ^b (ng/mg creat) Wedian (ng/ mg creat)	s determined by LC the corresponding I University of Leev FB ₁ n.a. ^a 87 0.342 \pm 0.466 (0.185 \pm 0.236) ^c	LOD. Values in p ds DON n.a. 100 20.4 ± 49.4 (9.9 ± 15.1)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DON 77 87 11.3 ± 27.1 (4.94 ± 7.60)	α -ZOL 72 92 0.614 ± 1.91 (0.247 ± 0.590)	β-ZOL 83 75 0.702 ± 2.95 (0.244 ± 0.820)	ZEA 98 100 (0.204 ± 0.456)	OTA 61 98 0.041 ± 0.086 (0.024 ± 0.058)	AFN 95
le 1 hary biomarker: igned a level of Recovery (%) & Positive (ng/mg creat) Median (ng/ mg creat) Maximum (ng/mg creat)	s determined by LC the corresponding I University of Leev FB ₁ 0.342 \pm 0.466 (0.185 \pm 0.236) ^c 0.176 (0.103) ^c	LOD. Values in p ds DON n.a. 100 20.4 ± 49.4 (9.9 ± 15.1) 8.95 (4.97)	ISPA FB1 61 96 1.52 ± 2.17 (0.841 ± 1.06) 0.689 (0.398)	DON 77 87 11.3 ± 27.1 (4.94 ± 7.60) 5.97 (3.07)	α-ZOL 72 92 0.614 ± 1.91 (0.247 ± 0.590) 0.063 (0.030)	β-ZOL 83 75 0.702 ± 2.95 (0.244 ± 0.820) 0.161 (0.085)	ZEA 98 100 0.529 ± 1.60 (0.204 ± 0.456) 0.118 (0.076)	OTA 61 98 0.041 ± 0.086 (0.024 ± 0.058) 0.024 (0.013)	AFN 95
he 1 hary biomarker: igned a level of & Positive Mean ± SD ^b (ng/mg creat) Median (ng/ mg creat) Maximum (ng/mg creat) Minimum (ng/	6 determined by LG the corresponding I University of Lees FB1 n.a. ⁸ 87 0.342 ± 0.466 (0.185 ± 0.236) ^c 0.176 (0.103) ^c 2.27 (1.30) ^c	LOD. Values in p ds DON n.a. 100 20.4 ± 49.4 (9.9 ± 15.1) 8.95 (4.97) 353 (99.2)	barentheses are ng ISPA 7B1 61 96 96 1.52 ± 2.17 (0.841 ± 1.06) 0.689 (0.398) 9.99 (4.94)	DON 77 87 11.3 ± 27.1 (4.94 ± 7.60) 5.97 (3.07) 190 (53.4)	$\begin{array}{c} \alpha\text{-ZOL} \\ 72 \\ 92 \\ 0.614 \pm 1.91 \\ (0.247 \pm 0.590) \\ 0.063 \ (0.030) \\ 13.2 \ (3.72) \end{array}$	β-ZOL 83 75 0.702 ± 2.95 (0.244 ± 0.820) 0.161 (0.085) 21.1 (5.94)	ZEA 98 100 0.529±1.60 (0.204±0.456) 0.118 (0.076) 11.2 (3.15)	OTA 61 98 0.041 ± 0.086 (0.024 ± 0.058) 0.024 (0.013) 0.629 (0.432)	AFN 95 0 -

Country	Subject	Sample	Aflatoxin levels: Incidence (Mean)	Reference
Benin/Togo Benin	Children (n=480) Children (n=200)	Blood Blood	99% (32.8 pg/mg) 98-100% (37.4-86.8)	Gong et al. 2003 Gong et al. 2004
Cameroon	Infants (n=220) Adults (n=175)	Urine	<i>n/a</i> (0.33ng/mL) 9.1% (0.05µg/L)	Ediage et al. 2013 Abia et al. 2013
Egypt	Lact. mothers (n=46) Preg. women (n=98)	Blood Blood Urine	37% (50ppm) 35% (4.9 pg/mg) 48% (19.7 pg/mg)	Shouman et al. 2012 Piekkola et al. 2012 Piekkola et al. 2012
Ghana	Adults (n=314)	Blood	<i>n/a</i> (14.91 pg/mg)	Jolly et al. 2013
Kenya	Children (n=199)	Blood	<i>n/a</i> (110.5 pg/mg)	Castelino et al. 2015
Nigeria	Adults, adolescents & children (n=120)	Urine	14.2% (0.3µg/L)	Ezekiel et al. 2014
Senegal	Adults (n=168)	Blood	<i>n/a</i> (45.7 pg/mg)	Watson et al. 2015
The Gambia	Children (n=472) Preg. women Preg. women Children (n=138)	Blood Blood Cord blood Blood	93% (22.3 pg/mg) 100% (40.4 pg/mg) 48.5% (10.1 pg/mg) 11% (8.7 pg/mg)	Turner et al. 2003 Turner et al. 2007 Turner et al. 2007 Turner et al. 2007
Tanzania	Children (n=166) Children (n=166)	Blood Blood	84% (12.9 pg/mg) 99% (23.5 pg/mg)	Shirima et al. 2015
Uganda	Adults (n=100) Children (n=96)	Blood Blood	100% (11.5 pg/mg) 95.8% (9.7 pg/mg)	Asiki et al. 2014

