

EFSA mycotoxin occurrence, data request & exposure assessment

Nada Jurišić BOKU, IFA-Tulln, Austria

20.09.2016

EFSA mycotoxin occurrence, data request & exposure assessment

EFSA – European Food Safety Authority

"Europeans enjoy one of the highest levels of food safety in the world."

"ensures safe, healthy food for consumers \rightarrow *field to fork"*

- The European Parliament and the Council adopted Regulation (EC) 178/2002 which sets general principles and requirements of the General Food Law
- EFSA is an agency legally established by the EU under the Regulation 178/2002
 - Operates independently of the EU Member States
 - Responsible for scientific advice (risk assessment) and support (to communicate on risk to the public)

"Food is essential to life. EFSA is working to keep food safe."

- The reason to establish agency like EFSA?
- Why do we need risk assessment in food industry?

- Series of food scandals during the 90's
- Production and consumption of food is constantly changing
 - Advances in food technology
 - Climate change
 - New eating habits
 - Globalization of trade

■ EFSA → risk assessor

- Collects and analyzes data, together with EU Member States \rightarrow European risk assessment is substantiated by the latest, clear scientific information
- <u>Only then</u> the EU legislators (European Commission EC) will authorize a certain claim

EFSA's task is also risk communication

- To establish the bridge between science and consumers
- To provide accurate information on food safety in time!

Different Scientific Commitees and Panels

- Independent scientific experts with a three-year mandate
- Carry out scientific assessments
- Some of them AHAW, ANS, BIOHAZ, CONTAM....
 - AHAW Panel on Animal Health and Walfare
 - ANS Panel on Food Additives and Nutrient Sources Added to Food
 - BIOHAZ Panel on Biological Hazards
 - ...

- Panel on Contaminants in the Food Chain (CONTAM)
 - Panels engage scientists (chemists, toxicologists, epidemiologists, statisticians, etc. → Panel Members) from all over Europe
 - Gives scientific advices and risk assessment on chemical contaminants like mycotoxins, other natural toxicants, or residues of unauthorized compounds to EU risk managers
 - European Commission requests evaluation from EFSA
 EFSA's Panel Members meet (CONTAM)
 Scientific Opinion published in EFSA Journal

- CONTAM on mycotoxin-contaminated food and feed
 - Assess human and animal exposure (occurrence data)
 - Exposure for specific population groups
 - Exposure of different animal species
 - Evaluate the toxicity of mycotoxins for humans and animals
 - Recommendations for the collection of further data on mycotoxins that enable better risk assessments

- EU legislation
 - EC Regulation \rightarrow maximum levels for mycotoxins in food and feed
 - EC Recommendations \rightarrow agricultural, storage and processing procedures

Risk assessment

- 3 pillars of risk analysis:
 - Risk assessment
 - Hazard identification
 - Hazard characterization
 - Exposure assessment
 - Risk characterization
 - Risk management
 - Risk communication

Hazard assessment + exposure assessment

What is the **potential** damage? What is the **extent** of damage? What is the **probability** of damage?

> Prof. Dr. S. Godefroy; lecture at IFA-Tulln, 2016 http://www.who.int/en/

CroMycoScreen

Risk assessment

Prof. Dr. S. Godefroy; lecture at IFA-Tulln, 2016 http://www.who.int/en/

CroMycoScreen

 Upon receiving request from the EC to deliver scientific opinions on risk related to certain mycotoxins calls for data are issued by EFSA

> "Share your data with EFSA. Contribute to food safety in Europe."

 Collected data are extracted by the EFSA data management system and then used for writing future EFSA scientific opinions

- EU Member States, research institutions, academia, national food authorities, industry, trade and any other stakeholders
 were invited to submit scientific data on occurrence of any of the following substances:
 - Deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-Ac-DON), 15-acetyl-deoxynivalenol (15-Ac-DON), DON-3-glucoside (DON-3-Glc) → closed in 2012
 - Nivalenol \rightarrow closed in November 2010
 - Ergot alkaloids, citrinin, sterigmatocystine, beauvericin, enniatines, phomopsins, moniliformin, diacetoxyscirpenol → closed in January 2011
 - Deadline extensions for moniliformin and diacetoxyscirpenol

Open calls for data

- "Call for continuous collection of chemical contaminants occurrence data in food and feed" → 1. October each year
 - Among them also for the following mycotoxins
 - Aflatoxins (B₁ in feed and B₁ and total in food, M₁ in dairy)
 - Ochratoxin A
 - Deoxynivalenol (and acetylated derivatives)
 - Zearalenone
 - Fumonisins
 - Patulin
 - T-2 and HT-2
 - Nivalenol
 - Ergot alkaloids
 - This continuous call includes mycotoxins, for which Commission Recommendations for occurence surveillance already exist

Open calls for data

- "Main work in progress" → deadline extensions for scientific opinions
 - Deoxynivalenol, its metabolites and masked deoxynivalenol → 31. January 2017
 - Moniliformin \rightarrow 31. December 2017
 - Diacetoxyscirpenol \rightarrow 31. December 2017
 - Deadline extensions for moniliformin and diacetoxyscirpenol → January 2011
 → September 2014 → December 2017

https://www.efsa.europa.eu/en/topics/topic/mycotoxins

,,,,,,, OH

н

Ħ

HŌ

Deoxynivalenol and its derivatives

- Trichothecene mycotoxin
- Produced by Fusarium fungi
- Contaminate grain and cereal-based food and feed
- In 2002, the Scientific Committee on Food (SCF)
 - TDI \rightarrow 1 µg/kg BW/day
- In 2010, Joint FAO/WHO Expert Committee on Food Aditives (JECFA) converted TDI for DON into DON and its derivatives
 - Provisional maximum tolerable daily intake (PMTDI) \rightarrow 1 µg/kg BW
 - Acute reference dose (ARfD) \rightarrow 8 µg/kg BW
- Maximum limits and guidance values were set to decrease the presence of DON in food and feed
 - Maximum level for DON up to 1750 µg/kg

Deoxynivalenol and its derivatives

- Data on the presence of DON should to be reported regularly at the European level
- 26 613 analytical results submitted for DON and its derivatives (3-Ac-DON, 15-Ac-DON, DON-3-Glc)
 - By 21 Member State and Norway
 - Croatia did not submit the results
 - Samples collected between 2007 and 2012
- At the highest levels, also most frequently DON was found in corn, wheat and oat grains and their food and feed products

- Acetylated DON derivatives were not found frequently, also in lower concentrations
 - DON was also present in most of the samples where 3-Ac-DON and 15-Ac-DON were quantified
- Occurrence data for DON-3-Glc submitted by 1 Member State
 - Found in around 5% of samples, almost always with DON
 - Not taken for the exposure assessment
- Main contributors to chronic exposure were bread and rolls
 - 30.9% to 72.3% of total exposure

- Main contributors to acute exposure grain milling products, bread and rolls, fine bakery ware and raw pasta
- CONTAM recommendations
 - Harmonize the sampling
 - Further data on 3-Ac-DON, 15-Ac-DON, and DON-3-Glc to characterize their contribution to the total exposure
 - Precise food description when submitting to EFSA
 - Report only one result which is considered most accurate when one sample analyzed using different analytical methods

- Trichothecene mycotoxin
- Produced by *Fusarium* genus fungi
- Causes general toxicity, haematotoxicity and immunotoxicity
- In 2000, the Scientific Committee on Food
 - Temporary tolerable daily intake (t-TDI) \rightarrow 0.7 µg/kg BW/day
- Almost 15 000 results were submitted
 - by 18 European countries
- CONTAM Panel evaluated 13 164 data on food, feed, and unprocessed grains for the Scientific Opinion

http://www.efsa.europa.eu/ EFSA Journal 2013; 13(6):3262

FA

- Based on available occurrence data and estimation of chronic dietary exposures → NIV is not of health concern in 17 European countries
 - Highest mean concentrations observed in oats, maize, barley, wheat and their products
- NIV is unlikely genotoxic, therefore TDI was set
 - TDI \rightarrow 1.2 µg/kg BW/day

http://www.efsa.europa.eu/ EFSA Journal 2013; 13(6):3262

FA

- Produced by *Diaporthe toxica* fungus
- Main host for fungus are lupins
 - Mainly animal consumption, but also for human consumption
- Phomopsin toxicosis (lupinosis) \rightarrow "disease of sheep"
- Lupinosis reported also in cattle, goats, donkeys, horses and pigs
- No data submitted to EFSA
 - Exposure assessment was not possible
- No data from animal trials → no conclusions on the toxicokinetics
- So far \rightarrow the oral LD₅₀
 - Sheep: 1.0 1.3 mg/kg BW
 - Nursling rats: 35 mg/kg BW

- No risk assessment for either humans or livestock
 - Dose-response information on toxicities missing
 - Exposure/occurence data missing
- CONTAM recommendations
 - Validate analytical methods for identification and quantification of phomopsins in food, feed, biological animal samples (from animal trials)
 - Collect data on the contamination in lupin-based food and feed with phomopsins
 - Estimate the consumption by human population and animals

http://www.efsa.europa.eu/ EFSA Journal 2012; 10(2):2567

- Produced by Aspergillus, Penicillium and Monascus fungi
- Nephorotoxic mycotoxin
- Instabile in various organic solvents and heat sensitive
- Only results for 30 samples submitted to EFSA
 - By 1 Member State
 - Samples collected in period from 2006 to 2008
 - EFSA investigated CIT occurrence reported in the literature
- CONTAM Panel concluded no-observed-adverse-effect level (NOAEL) of 20 µg/kg BW/day
 - A 90-day toxicity study in rats

- Risk assessment not possible
 - Not only grain and grain-based products are source of CIT
 - No conclusion on chronic exposure for nephrotoxicity \rightarrow not enough data

CONTAM recommendations

- Collect more occurrence data
- Characterize dose-response relationship
- Have certified reference materials
- Collect data on carryover of CIT from the feed to animal products for human consumption
- Validate analytical method in an inter-laboratory study

- Produced by *Aspergillus* fungi
- Shares biosynthetic pathway with aflatoxins
- Analytical results from 247 food and 334 feed samples submitted
 - By 2 Member States
- Adsorption of STC is limited after oral exposure
 - Insufficient data to assess the rate of carryover into milk
 - No information about carryover into meat or eggs
- Toxicity
 - Oral LD₅₀ between 120 and 166 mg/kg BW
 - Target organs liver and kidneys
 - Genotoxic and carcinogenic

http://www.efsa.europa.eu/ EFSA Journal 2013; 11(6):3254

FA

- Risk characterization not possible
 - Absence of exposure data
 - An exposure to grains and their products of low health concern would range from 1.5 to 8 $\mu g/kg$
 - Bench Mark Dose Low (BMDL₁₀) of 0.16 mg/kg BW/day were calculated
- CONTAM recommendations
 - Occurrence data necessary for risk characterization
 - Methods with an LOQ lower than 1.5 µg/kg
 - Certified reference material needed
 - Proficiency tests to support analytical methodology

Beauvericin and enniatins (ENNs)

- Produced by *Fusarium* fungi species
- Predominantly contaminate cereal grains
- Cyclic hexadepsipeptides
 - 29 naturally occurring analogue enniatins identified
- 2147 analytical results for beauvericin and 10 538 for ENNs in food, feed, and unprocessed grain submitted
 - By 12 European countries
 - Sum of four enniatins (A, A1, B, B1) taken for the assessment
 - Samples collected in period between 2000 and 2013

Beauvericin and enniatins (ENNs)

- The highest mean concentrations of beauvericin found in dried fruits, oilseeds, cereal based food for infants and young children and of ENNs in coffee beans and raw pasta
 - Stable during commercial cereal processing
- Chronic exposure for beauvericin
 - Mean exposure range from 0.003 μg/kg BW/day to 0.050 μg/kg BW/day
- Chronic exposure to sum of ENNs
 - Mean exposure range from 0.42 μg/kg BW/day to 1.82 μg/kg BW/day

Beauvericin and enniatins (ENNs)

- Insufficient data for TDI or ARfD
- Risk assessment not possible
 - lack of toxicity data
- CONTAM recommendations
 - Inter-laboratory validation studies
 - Development of certified reference materials
 - In vivo toxicity data needed
 - Co-occurrence of beauvericin with enniatins confirmed → but further data needed, as well as possible combined effects

Ergot alkaloids (EAs) efsa

- Produced by sclerotia of *Claviceps* species
- In Europa most common *Claviceps purpurea*
- St. Antony's fire, ergotism
- More than 50 EAs identified
- 25 840 analytical data submitted
 - By 14 European countries
 - All samples collected between 2004 and 2011
 - Selected data based on the presence of 4 most abundant EAs (ergotamine, ergocristine, ergocornine, ergosine)
- The highest concentrations reported in rye grains and rye-based products

http://www.efsa.europa.eu/ EFSA Journal 2012; 10(7):2798

FA

Ergot alkaloids (EAs)

- Chronic exposure
 - Mean exposure range from 0.007 $\mu g/kg$ BW/day to 0.080 $\mu g/kg$ BW/day
- EAs can cause acute as well as chronic effects → appropriate to establish both ARfD and TDI
 - ARfD \rightarrow 1 µg/kg BW
 - TDI \rightarrow 0.6 µg/kg BW/day
- Available data do not indicate a health concern
- CONTAM recommendations
 - Continuance of collecting analytical data
 - Need for commercially reference standards

http://www.efsa.europa.eu/ EFSA Journal 2012; 10(7):2798

FA

EFSA mycotoxin occurrence, data request & exposure assessment

- 1. EC, which is responsible for legislation, **requests Scientific Opinion** from EFSA on certain contaminants (among them mycotoxins)
- EFSA opens call for data collection → institutions from EU Member States and other European countries are welcome to submit analytical results
 - Croatia did not submit data for the most prevalent mycotoxin before last Scientific Opinion
- 3. CONTAM Panel members **write Scientific Opinions** on risks regarding mycotoxins in food and feed
- 4. New **Directives and Regulations** are **passed** if Scientific Opinions proclaim upcoming risks
- 5. With new **Directives and Regulations in force** consumers eat safer food

FA

BOKU

EFSA mycotoxin occurrence, data request & exposure assessment

Thank you!