faculty of food technology and biotechnology

University of Zagreb

University of Zagreb Faculty of Economics & Business Ana Ilić¹, Martina Bituh¹, Ivana Rumbak¹, Lucija Marić¹, Tea Karlović¹, Ružica Brečić², Irena Colić Barić¹

CONSUMPTION OF PROCESSED FOOD AND ITS IMPACT ON

DIET QUALITY IN CROATIAN SCHOOL-AGED CHILDREN

¹ Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia

INTRODUCTION

In countries around the world, a dietary shift is observed in which the consumption of highly processed foods with high content of added sugar, sodium and fat increases over unprocessed or minimally processed foods.^{1,2} Such inadequate dietary behaviour in childhood can increase the risk of developing obesity and other non-communicable diseases.³

OBJECTIVES

The objectives of this study were to observe the consumption of processed foods in the overall diet of school-aged children and to estimate differences in dietary intake between two dietary fractions.

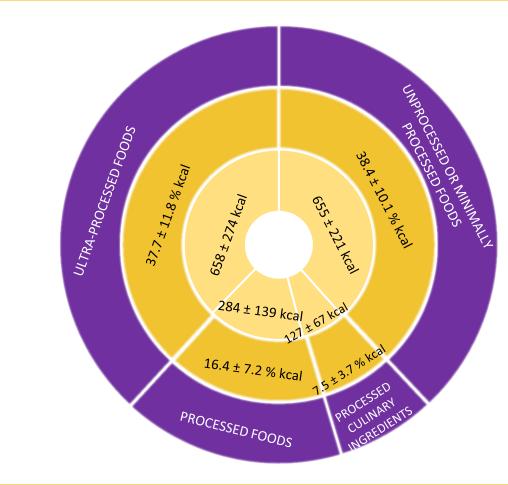
SUBJECTS AND METHODS

Dietary intake was observed from dietary records for three non-consecutive days of 168 children (50.6% boys) aged 8.3 ± 0.5 years (Zagreb City). All foods and beverages were classified into four groups according to the NOVA Food Classification system based on the type, extent and purpose of industrial food processing.⁴ The contribution of each NOVA food group to total energy was calculated and the mean nutrient intake of two dietary fractions (<50% and ≥50% of total energy intake from ultra-processed foods) was compared. Anthropometric measurements were performed according to standard protocols, while z-scores were obtained using AnthroPlus software.⁵

RESULTS

Basic descriptive characteristics of children in sample are presented in Table 1. Results

Table 2. Difference in average daily energy and nutrient intake between students whose intake were < 50% and \geq 50% of total energy intake from "ultra-processed foods" in sample¹



show (Figure 1) that "unprocessed or minimally processed foods" had the highest proportion of dietary intake (38.4% of energy intake), followed by "ultra-processed foods" (37.7%), "processed foods" (16.4%), and "processed culinary ingredients" (7.5%). There was no difference in all four processed food categories intake by gender or BMI (Figure 2 and 3). Children who had ≥50% of their energy intake from "ultra-processed foods" had lower intake of monounsaturated fatty acids (p=0.003), polyunsaturated fatty acids (p=0.004), vitamins and minerals compared with children with <50% (Table 2).

Table 1. Basic characteristics of students in sample¹

Characteristic	Total of 168 students 8.3 ± 0.5	
Age (yr.)		
Sex		
Male (%)	50.6	
Female (%)	49.4	
Body height (cm)	134.9 ± 5.6	
z-score body height-for-age	0.84 ± 0.95	
Body weight (kg)	30.6 ± 6.0	
z-score body weight-for-age	0.68 ± 1.05	
Body mass index (kgm ⁻²)	16.7 ± 2.5	
z-score body mass index-for-age	0.26 ± 1.14	
Body mass index categories according to z-score be	ody mass index-for-age	
< - 1 (%)	12.8	
- 1 - 1 (%)	65.4	
> 1 (%)	21.8	

¹ All continuous variables are presented as mean (± standard deviation) and categorical as percentages.

J0/0 and 2 J0/0 01 total e		ultia-processeu roous	in sample	
Dietary parameters	Overall	Non-ultra processed dietary fraction	Ultra processed dietary fraction	p value'
Energy (kcal)	1706 (1428 – 1920)	<mark>(n=147)</mark> 1681 (1414 – 1905)	<mark>(n=21)</mark> 1848 (1526 – 1978)	0.233
Proteins (g)	66.2 (57.1 – 78.0)	67.3 (57.4 – 79.4)	59.5 (56.6 – 67.3)	0.067
Plant protein (g)	22.4 (18.2 – 27.2)	22.5 (18.4 – 27.3)	22.0 (16.5 – 26.4)	0.411
Animal protein (g)	43.1 (36.1 – 52.7)	43.5 (36.9 – 53.1)	37.0 (29.3 – 47.1)	0.055
Carbohydrates (g)	210.0 (172.3 – 246.5)	208.4 (169.1 – 244.4)	235.4 (185.7 – 251.9)	0.282
Monosaccharides (g)	66.8 (49.9 – 85.9)	65.5 (49.0 – 84.9)	71.8 (60.7 – 94.0)	0.147
Polysaccharides (g)	82.9 (64.1 – 106.4)	85.4 (67.7 – 107.5)	55.8 (43.3 – 76.7)	< 0.001
Dietary fibre (g)	15.2 (12.0 – 17.8)	15.5 (12.2 – 18.1)	13.1 (11.6 – 17.1)	0.151
Fat (g)	68.7 (56.3 – 81.2)	66.7 (55.4 – 81.2)	77.7 (67.6 – 80.2)	0.101
Saturated fatty acids (g)	28.1 (22.3 – 33.6)	27.7 (22.0 – 32.9)	30.3 (26.6 – 34.9)	0.056
Monounsaturated fatty acids (g)	16.8 (13.5 – 21.9)	17.4 (14.1 – 22.5)	13.7 (11.0 – 16.4)	0.003
Polyunsaturated fatty acids (g)	11.5 (9.0 – 15.0)	11.8 (9.5 – 15.6)	9.8 (7.4 – 11.0)	0.004
Sodium (mg)	3123.59 (2596.58 – 3823.16)	3142.10 (2603.82 – 3914.23)	3076.03 (2563.14 – 3644.66)	0.459
Potassium (mg)	2067.30 (1603.11 – 2474.98)	2138.31 (1658.52 – 2507.36)	1498.09 (1126.26 – 1868.11)	< 0.001
Calcium (mg)	647.73 (526.52 – 781.28)	, 662.97 (547.01 – 795.99)	527.63 (355.63 – 734.77)	0.039
Magnesium (mg)	119.84 (97.47 – 147.38)	119.97 (100.13 – 147.64)	94.36 (79.59 – 140.52)	0.138
Phosphorous (mg)	905.99 (744.18 – 1087.91)	944.46 (763.45 – 1114.40)	632.40 (578.07 – 834.74)	< 0.001
Iron (mg)	7.34 (5.92 – 9.12)	7.60 (6.10 – 9.60)	5.82 (5.18 – 6.92)	0.004
Zinc (mg)	2.80 (2.15 – 3.41)	2.85 (2.22 – 3.44)	2.16 (1.67 – 3.13)	0.024
Copper (mg)	2.15 (1.25 – 3.28)	2.14 (1.33 – 3.24)	2.22 (1.16 – 3.27)	0.775
Vitamin A (µg RE)	538.93 (353.19 – 721.49)	552.61 (365.10 – 726.74)	374.86 (204.36 – 577.36)	0.013
Thiamine (mg)	0.77 (0.59 – 1.02)	0.78 (0.63 – 1.02)	0.59 (0.50 – 0.79)	0.020
Riboflavin (mg)	1.08 (0.85 – 1.33)	1.09 (0.88 – 1.32)	0.92 (0.77 – 1.33)	0.418
Niacin (mg)	12.01 (9.31 – 14.29)	12.22 (10.12 – 14.33)	7.74 (6.36 – 11.37)	0.002
Pyridoxine (mg)	1.07 (0.78 – 1.34)	1.08 (0.83 – 1.34)	0.61 (0.49 – 1.13)	0.022
Vitamin C (mg)	75.64 (45.02 – 104.35)	77.45	52.78	0.130

¹ All variables are presented as mean (± standard deviation). Figure 1. Average absolute and relative daily energy intake according to NOVA food processing groups and subgroups in total sample (n=168)¹

Differences were tested using an independent Student's T-test (p<0.05) Figure 2. Differences in relative energy intake according to NOVA food processing groups between sex Differences were tested using analysis of variance (p<0.05) Figure 3. Differences in relative energy intake according to NOVA food processing groups between body mass index categoriess

¹ All variables are presented as mean (± standard deviation).

* differences between two dietary fraction were tested using Mann-Whitney U test (p<0.05)

CONCLUSIONS

This study shows that nearly one-third of the energy intake of school-aged children comes from the "ultra-processed foods" group. The study also showed that high energy intake from the "ultra-processed foods" group can contribute to poor overall nutrition which could affect children's growth and development. Further research is needed on the factors that contribute to the consumption of ultra-processed foods in order to reduce the intake of these foods.

REFERENCES

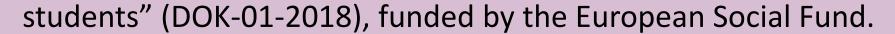
- 1. Popkin (2006) Food Policy 31, 554-569.
- 2. Popkin (2006) Am. J. Clin. Nutr. 84, 289-298.
- **3.** Elizabeth et al. (2020) Nutrients, 12, 1995.

ACKNOWLEDGEMENT

This research was funded by the European Commission – Horizon 2020 research and innovation programme project "Strength2Food" under grand agreement No. 678024. The work of doctoral student was

4. Monteiro et al. (2019) Public Health Nutr. 22 (5), 936-941.

5. BlössnerM et al. WHO AnthroPlus for personal computers manual:


Software for assessing growth of the world's children and adolescents.

Geneva: World Health Organisation; 2009.

iu agreement No. 078024. The work of doctoral student was

"Young researchers' career development project – training of doctoral

