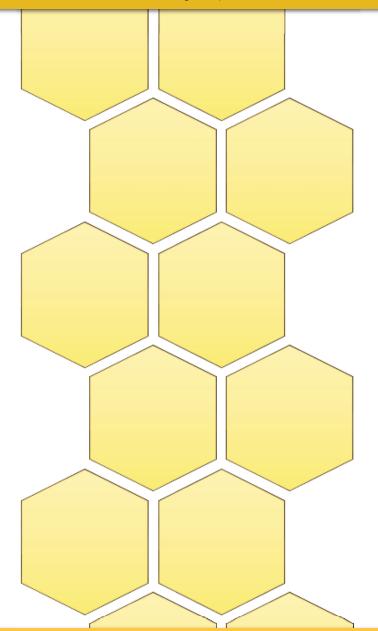


PHENOLIC COMPOSITION AND ANTIOXIDANT ACTIVITY OF MINT (MENTHA SPP.) HONEY

Tomislav Pavlešić¹, Sanja Poljak², Christian Reynolds², Alan Šustić¹, Lara Saftić Martinović^{2*}

¹University of Rijeka, Faculty of health studies, Viktora Cara Emina 5, Rijeka, Croatia ²University of Rijeka, Department of biotechnology, Radmile Matejčić 2, Rijeka, Croatia * lara.saftic@biotech.uniri.hr

The composition of honey is influenced by the **botanical source** and **geographical area** of the nectar from which it is derived.


Unifloral honeys reach higher market values than multifloral ones due to their specific and reproducible aromas, which result from volatile and phenolic compounds.

The aim of our study was to characterize the phenolic composition of a rare unfloral variety of honey- Mentha spp. honey.

Keywords: Mentha spp. honey, antioxidant activity, LC-MS/MS, phenols, phenolic profiling

Methodology

Seven samples of *Mentha spp*. honey were collected directly from local Croatian producers. Samples were collected between years 2015 and 2020 at different geographical locations in Croatia (Figure 3). For all the samples, total phenolic content (Folin method), flavonoid content, and antioxidant activity (DPPH and ABTS assays) were determined. In addition, by use of LC-MS/MS, qualitative and quantitative analysis of phenolic compounds were obtained.

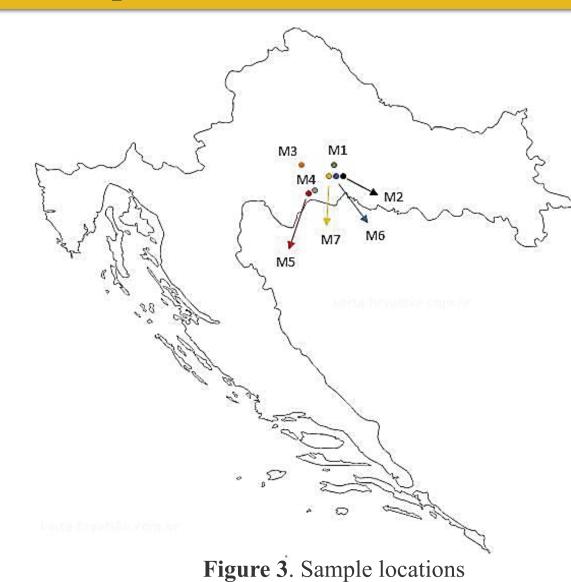


Figure 1. Mentha aquatica L.

Figure 2. Mentha pulegium L.

Results

Our results indicate that *Mentha spp*. honey have high phenolic content, ranging from 76.66 ± 0.56 to 121.14 ± 3.81 mgGAEeq phenols/100g and 6.70 ± 0.62 to 17.10 ± 0.68 mgQUEeq flavonoids/100g (Table 1). These honeys also exhibit strong antioxidant activity ranging from 33.58 ± 2.80 to 57.86 ± 1.24 mg Trolox eq/100g and 14.37 ± 0.85 to 57.83 ± 0.18 mg Trolox eq/100g when analysed using DPPH and ABTS assays, respectively (Table 1). Quantitative LC-MS/MS analysis revealed that the most abundant phenols in all samples were chrysin, apigenin and *p*-coumaric acid. Qualitative LC-MS/MS analysis identified the presence of kaempferide, diosmetin, acacetin and several caffeic acid derivatives.

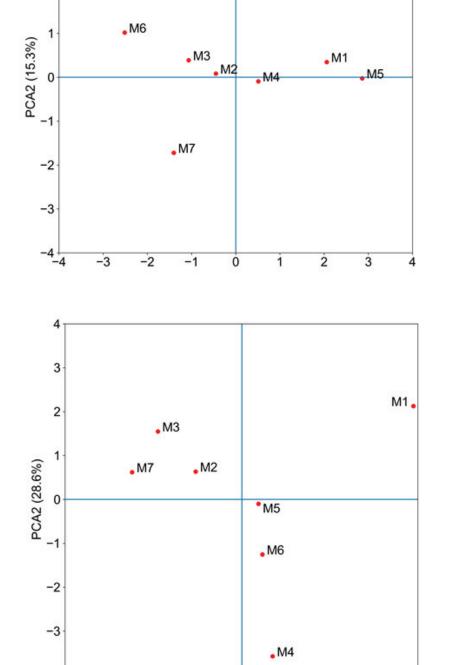
Table 2. Quantified phenolic compounds in Mentha L honey.

Results are expressed as mean mg/100 g honey \pm standard deviation.

Table 1. Total phenolic content, total flavonoid content
and antioxidant activity of Mentha L honey.
Results are expressed as mean \pm standard deviation.

				, 100010110		M1	M2	M3	M4	M5	M6	M7	
					2,5-DHBA	0.0130 ± 0.0184	<loq*< th=""><th><loq< th=""><th>0.0450 ± 0.0080</th><th><loq< th=""><th>0.0136 ± 0.0017</th><th>0.0133 ± 0.0008</th><th></th></loq<></th></loq<></th></loq*<>	<loq< th=""><th>0.0450 ± 0.0080</th><th><loq< th=""><th>0.0136 ± 0.0017</th><th>0.0133 ± 0.0008</th><th></th></loq<></th></loq<>	0.0450 ± 0.0080	<loq< th=""><th>0.0136 ± 0.0017</th><th>0.0133 ± 0.0008</th><th></th></loq<>	0.0136 ± 0.0017	0.0133 ± 0.0008	
Sample	Total phenols mg eqGAE/100 g	Total flavonoids mg eqQUE/100 g	DPPH mg eqTROLOX/	ABTS mg eqTROLOX/	3,4-DHBA	0.0786 ± 0.0079	0.1776 ± 0.0014	0.0726 ± 0.0024	0.5652 ± 0.1604	0.1235 ± 0.0027	0.3425 ± 0.1226	NA	
	honey	honey	100 g honey	100 g honey	apigenin	0.2199 ± 0.0168	0.2424 ± 0.0176	0.6393 ± 0.0149	0.1093 ± 0.0010	0.1098 ± 0.0013	0.1789 ± 0.0098	0.1065 ± 0.0002	
					caffeic acid	0.1299 ± 0.0113	0.1907 ± 0.0084	0.1284 ± 0.0205	0.1541 ± 0.0504	<loq< th=""><th>0.1148 ± 0.0089</th><th>0.2772 ± 0.2083</th><th></th></loq<>	0.1148 ± 0.0089	0.2772 ± 0.2083	
M 1	121.14 ± 3.81	13.65 ± 0.58	57.40 ± 0.81	47.18 ± 0.31	chrysin	1.3297 ± 0.5159	0.4760 ± 0.0957	0.2898 ± 0.0181	0.1119 ± 0.0049	0.2205 ± 0.0404	0.5137 ± 0.0682	0.2506 ± 0.0073	
M2	89.76 ± 0.16	11.59 ± 0.35	40.89 ± 1.90	38.42 ± 0.62	kaempferol	0.0352 ± 0.0006	0.0587 ± 0.0020	0.0722 ± 0.0034	0.0337 ± 0.0005	0.0327 ± 0.0027	0.0661 ± 0.0239	0.0348 ± 0.0003	
M3	78.35 ± 1.25	10.60 ± 0.54	42.72 ± 1.87	30.36 ± 0.74	luteolin	0.0572 ± 0.0017	0.0164 ± 0.0003	0.0108 ± 0.0002	0.0142 ± 0.0004	0.0223 ± 0.0006	0.0096 ± 0.0002	0.0179 ± 0.0010	
M4	90.06 ± 1.05	12.52 ± 0.81	51.26 ± 1.20	44.81 ± 1.90	rutcomi	0.0372 ± 0.0017	0.0104 ± 0.0003	0.0100 ± 0.0002	0.0142 ± 0.0004	0.0223 ± 0.0000	0.0070 ± 0.0002	0.0179 ± 0.0010	
M5	118.60 ± 2.09	17.10 ± 0.68	57.86 ± 1.24	57.83 ± 0.18	myricetin	0.0008 ± 0.0002	0.0042 ± 0.0001	0.0016 ± 0.0018	0.0017 ± 0.0005	0.0019 ± 0.0001	0.0004 ± 0.0004	0.0058 ± 0.0001	
M6	78.44 ± 0.34	7.77 ± 0.24	33.58 ± 2.80	14.37 ± 0.85	naringenin	0.0656 ± 0.0016	0.0314 ± 0.0002	0.0315 ± 0.0000	0.0131 ± 0.0151	0.0232 ± 0.0006	0.0254 ± 0.0002	0.0255 ± 0.0006	b
M 7	76.66 ± 0.56	6.70 ± 0.62	36.73 ± 2.00	55.07 ± 2.37	<i>p</i> -coumaric acid	0.6790 ± 0.1075	0.5338 ± 0.0443	0.3732 ± 0.0248	0.7105 ± 0.1523	0.4314 ± 0.0633	0.8166 ± 0.2376	0.3400 ± 0.0151	
					quercetin	0.0320 ± 0.0006	0.1015 ± 0.0006	0.1279 ± 0.0001	0.0580 ± 0.0004	0.0573 ± 0.0012	0.0960 ± 0.0004	0.1495 ± 0.0228	

Table 3 Some of the compounds in *Mentha* L. honey identified via LC-MS/MS. In the table, tentative identification based on the retention time (RT), precursor mass and fragmentation pattern are given. Level of confirmation: 1- standard, 2- literature


Tentative identification	RT	Precursor mass	Fragmentation pattern	Molecular formula	Level of confirmation	
Dimethyl caffeic acid	8.6	209.0 (+)	190.7 [C11H11O3]+, 162.9 [C9H7O3]+, 133.0 [C9H9O]+, 118.9	C ₉ H ₈ O ₄	2	
			[C7H3O2]+			
Abscisic acid	8.9	263.0 (-)	219.1 [C14H19O2]-, 203.8 [C13H15O2]-, 152.9 [C9H13O2]-	$C_{15}H_{20}O_4$	2	
Sebacic acid	9.2	200.9 (-)	182.8 [C10H15O3]-, 138.8 [C9H15O]-, 110.9 [C8H15]-	$C_{10}H_{18}O_4$	2	
Quercetin methyl ether	10	315.0 (-)	300.0 [M-CH3] -, 270.7 [M-CH3-CO] -, 255.0	$C_{16}H_{21}O_{7}$	2	
Diosmetin	10.9	301.0 (+)	285.9 [C15H9O6]+, 257.9 [C14H9O5]+, 228.7 [C13H9O4]+	$C_{16}H_{12}O_6$	1	
Kaempferide	11	299.0 (-)	284.0 [C15H8O6]-, 255.0, 227.0 [C13H7O4]-	$C_{16}H_{12}O_{6}$	2	
Caffeic acid prenyl ester (prenyl caffeate)	11.4	247.0 (-)	246.7, 178.8 [C9H7O4]-, 160.8[C9H5O3]-, 135.0 [C9H7O4-CO2]-	$C_{14}H_{16}O_{4}$	2	
Caffeic acid phenylethyl ether (CAPE)	11.5	283.0 (-)	179.0 [C9H7O4]-, 135.0 [C9H7O4-CO2]-	$C_{17}H_{16}O_4$	2	
Acacetin	11.7	283.0 (-)	268.0	$C_{16}H_{12}O_5$	2	

2.0
1.5
1.0
2.0
1.5
1.0
2.0
Total flavonoids
DPPH

ABTS

-1.0
-1.5
-2.0
Loadings on PC1

b)

PCA1 (34.8%)

Figure 4. Distribution of samples in the space of principal component 1 (PC1) and principal component 2 (PC2) for a) total phenolic content, total flavonoid content, DPPH and ABTS antioxidant activities, and b) quantified phenolic compounds (LC-MS/MS) in *Mentha* L. honeys.

p-coumaric acid

2,5-DHBA

3,4-DHBA

-1.5 -1.0 -0.5 0.0 0.5

Conclusion

Our study indicates that Mentha spp. honeys contain unique phenolic profiles, which likely contribute to their distinctive aroma and strong antioxidant activity.

