

ESSENTIAL OILS IN WILD FENNEL ISTRIAN (Foeniculum vulgare Mill.): VARIABILITY IN THE **CONTENT AND COMPOSITION**

Maja Repajić^{1*}, Ena Cegledi¹, Igor Palčić², Nina Marčac³, Verica Dragović-Uzelac¹

¹Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia ²Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia prehrambeno biotehnološki ³IREKS AROMA Ltd., Trešnjevka 24, 10450 Jastrebarsko, Croatia **IREKS** Sveučilište *maja.repajic@pbf.unizg.hr

INTRODUCTION

Fennel (Foeniculum vulgare Mill.) is a ubiquitous member of the Apiaceae family whose fruits (seeds) are used extensively as flavoring agents in food, cosmetic and pharmaceutical products (Sayed-Ahmad et al., 2017). Fennel seeds are rich in essential oils (EO), the content and composition of which may vary according to geographical origin (Díaz-Maroto et al., 2006). Therefore, this study aimed to evaluate EO variation in wild fennel seeds collected from five natural habitats located in Istria region (Croatia): Poreč, Pula, Plomin, Raša and Vodnjan.

Table 1. Volatiles identified in wild fennel EO

Peak	RT	Compound	Peak	RT	Compound
no.	(min)		no.	(min)	
1	5.380	α-pinene	11	9.074	γ-terpinene
2	5.759	camphene	12	9.370	cis-sabinene hydrate
3	6.400	sabinene	13	10.141	L-fenchone
4	6.500	B-pinene	14	10.562	linalool
5	6.856	myrcene	15	12.293	camphor
6	7.283	α -phellandrene	16	14.172	α-terpineol
7	7.668	a-terpinene	17	14.528	estragole
8	7.917	<i>p</i> -cymene	18	16.253	carvone
9	8.048	D-limonene	19	16.763	<i>p</i> -anisaldehyde
10	0 1 4 7	au calvetal	20	10 1 15	trans anothala

RESULTS

Figure 4. Chemical composition of EO from wild fennel collected at different locations in Istria

Agilent Technologies 6890N/5973i MSD

- column HP-5MS [(5%-phenyl)-methylpolysiloxane; 30 m × 0,25 mm × 0,25 µm]
- gas carrier helium at flow of 1 mL min⁻¹, injection volume 1 µl, split ratio 100:1
- T_{injector}=250 °C, T_{transfer line}=280 °C, T_{detector}=250 °C, temperature regime: 60 145 °C, 3 °C/min; 145 250, 30 °C/min; 250 °C/3 min

ANOVA / Tukey's HSD test ($p \le 0.05$)

CONCLUSION

- The samples differed significantly according to the EO yield, which ranged from 4.90 (Plomin) to 6.30% (Pula)
- A total of 20 volatiles were identified and quantified •
- Phenylpropanoids dominated in all samples (71.33-77.31%), followed by oxygenated monoterpenes (14.40-18.32%) and monoterpene hydrocarbons (7.48-12.02%)
- Trans-anethole (15.57-70.94%), estragole (6.18-55.89%) and L-• fenchone (11.60-16.85%) were the major constituents, while αpinene, myrcene and D-limonene were present in lower but noticeable amounts (1.85-3.78, 1.66-2.63 and 1.04-1.57%, respectively)

(1) Poreč, (2) Pula, (3) Plomin, (4) Raša, (5) Vodnjan

This work was supported by the Croatian Science Foundation project **Plant**BioPower

• Díaz-Maroto, M. C., Pérez-Coello, M. S., Esteban, J., Sanz, J. (2006) Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from Central Spain. Journal of Agricultural and Food Chemistry, 54(18), 6814-6818.

• Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A., Merah, O. (2017) The Apiaceae: Ethnomedicinal family as source for

industrial uses. Industrial crops and products, 109, 661-671.

"Isolation and encapsulation of bioactive molecules of wild and cultivated

