

Comparative evaluation of antioxidant and antimicrobial properties of some comercially available edible and medicinal mushrooms

Marina Grubišić, Mirela Ivančić Šantek, Sunčica Beluhan

Department of Biochemical Engineering, Faculty of Food Tecnology and Biotechnology University of Zagreb, Pierottijeva 6, Zagreb, Croatia

Abstract

Four commercially available edible and medicinal mushrooms from Croatia including shiitake (*Lentinus edodes*), black poplar (*Agrocybe aegerita*), oyster (*Pleurotus ostreatus*) and golden oyster (*Pleurotus citrinopileatus*) were assayed *in vitro* for their antioxidant and antimicrobial activities using water, ethanol and ethyl acetate as extractive solvents. Ascorbic acid, β -carotene, lycopene, α -tocopherol, total phenol, and flavonoids content were determined. Extracts obtained from dried mushrooms were evaluated for antioxidant activity by the reducing power, DPPH free radical scavenging activity and ferrous ion chelating ability. Water extracts exhibited higher antioxidant activities than ethanol and ethyl acetate extracts. Concerning EC₅₀ values of scavenging abilities, the effectiveness was in descending order: ethyl acetate > ethanol > water. Scavenging activity of all the extracts has been significant compared to controls. Positive correlations were found between total phenolic content in the mushrooms extracts and their antioxidant activities. *A. aegerita* found to have the highest phenolic and flavonoid content. The four studied mushrooms showed narrow antibacterial activities against Gram-positive and Gram-negative bacteria, and strongly inhibited the growth of yeast *Candida albicans*.

Objectives

The primary objectives of this study were:

(i) to determine the total phenol, flavonoid, ascorbic acid, α -tocopherol, β -carotene and lycopene contents,

(ii) to evaluate antioxidant activity of the mushrooms extracts, and

(iii) to determine antimicrobial effect of the mushrooms extracts of four edible and medicinal mushroom species (*L. edodes, A. aegerita, P. ostreatus* and *P. citrinopileatus*).

Materials and methods

Results and Discussion

Reducing power of a compound may be serving as a significant indication of its potential antioxidant activity. The presence of reducers (i.e., antioxidants) causes the reduction of Fe³⁺/ferrocyanide complex to ferrous form (3). The EC₅₀ value for hot water extract was about 1.6 mg/ml, which was higher than ethanolic and ethyl acetate extracts. One of the most common methods for determination of antioxidant capacity is the DPPH free radical scavenging activity assay. The best scavenging effect was obtained in ethanolic extracts (*A. aegerita*, 0.78 mg/ml). The best ability for chelating of ferrous ions was obtained in hot water extracts (*P. ostreatus*, 2.28 mg/mL). Hot water extracts showed the best antioxidant activity in most investigated assays for antioxidant activity determination (Table 2).

The samples of fresh fruting bodies of four commercially cultivated mushroom species were cleaned and subsequently air-dried in an oven at 50 °C for 12h before analysis and ground to obtain fine powder. 5 g of powders were overnight extracted with 50 ml of hot water (80 °C), ethanol and ethyl acetate (room temperature).

The amount of total phenols (TP) was determined by using Folin-Ciocaleau method. Flavonoids contents in the extracts were determined by colorimetric method (1). Ascorbic acid content of the extracts was assayed with 1% meta-phosphoric acid. β -carotene and lycopene content were determined with acetone:hexane mixture (4:6, v/v). α -tocopherol was determined by anhydrous ethanol and xylene extraction (2). The antioxidant activity was determined by the conjugated diene method. The reducing power assay were carried out spectrophotometrically at 700 nm. DPPH free radical scavenging activity was assayed with methanolic solution of DPPH radicals. Chelating ability of ferrous ions was assayed with ethanol and 2 mM ferrozine (3).

Results and Discussion

Mushrooms are a natural source of potent bioactive antioxidant metabolites (4). Indeed, phenolic compounds are heavily investigated for their high potential benefit on human health. Some species among higher fungi show higher antioxidant properties when compared with others. Such mushroom species include in particular shiitake (*L. edodes*) and oyster mushrooms (*P. ostreatus* and *P. citrinopileatus*). These two fungus seems to concentrate a complete "arsenal" against oxidative stresses (5). It includes primary antioxidant compounds (ascorbic acid/vitamin C, α -tocopherol/vitamin E, and β -carotene/vitamin A), the high content of phenolic compounds with extensive reducing and scavenging properties (Table 1, Fig. 1). Other mushrooms with strong antioxidant abilities include *A. aegerita* whose antioxidant effects and free radical scavenging abilities are correlated with its total phenolic content (1).

Table 1. Antioxidant	components co	ntent of the ext	racts from L. ea	lodes, A. aegerita,
P. ostreatus and P. o	sitrinopileatus	A		
	L. edodes	A. aegerita	P. ostreatus	P. citrinopileatus
		4 00 0 00 0	4.00.0.040	4 00 0 000
Ascorbic acid (mg/g)	1.73±0.19B°	1.89±0.05A	1.26±0.01C	1.23±0.05C
β-Carotene (μg/g)		na	na	
Lycopene (µg/g)	0.81±0.42A	0.63±0.21C	0.89±0.09A	0.72±0.11B
α -Tocopherol (µg/g)	nd	nd	nd	nd
Flavonoids (mg/g)	3.92±0.07A	1.50±0.36D	1.92±0.11C	2.04±0.05B
I otal phenols (mg/g)	12.88±0.09B	13.95±0.17A	12.21±0.61D	12.56±0.01C
	0.00.0.040			0.00.0 400
Ascorbic acid (mg/g)	0.39±0.34B	0.56±0.28A	0.35±0.06B	0.29±0.43C
β-Carotene (μg/g)	0.04±0.11B	0.07±0.01A	0.02±0.42C	0.04±0.12B
Lycopene (µg/g)	4.91±0.14B	5.23±0.11A	4.93±0.21B	4.31±0.29B
α -Tocopherol (µg/g)	2.01±0.09A	2.09±0.11A	1.24±0.26C	1.61±0.09B
Flavonoids (mg/g)	1.75±0.17C	3.21±0.22B	4.51±0.11A	3.49±0.09B
I otal phenols (mg/g)	12.61±0.01B	14.98±0.12A	9.55±0.21C	8.89±0.13D
Ethyl acetate				0.47.0.040
Ascorbic acid (mg/g)	0.19±0.05B	0.24±0.19A	0.16±0.11D	0.17±0.04C
β-Carotene (μg/g)	0.01±0.12B	0.02±0.09A	nd	nd
Lycopene (µg/g)	3.89±0.02A	3.91±0.13AA	3.39±0.07B	3.31±0.13B
α-Tocopherol (µg/g)	1.26±0.08B	1.38±0.03A	1.19±0.27C	1.19±0.11C
Flavonoids (mg/g)	1.20±0.15C	2.21±0.01B	3.42±0.22A	2.29±0.05B
Total phenols (mg/g)	12.25±0.06B	13.01±0.07A	12.01±0.01B	12.28±0.08B
^a Within the same ro	w, mean followe	d by different le	tters are signific	antly different at
$p \le 0.05.$				
and = not detected				
			(B) 120	(B)
				8
14 00 J	- 08 (%			
	e e e e		ide ab	××
bo bo g = → L. edodes → A. aegerita		→ L. edodes	0 Chelati	↔ L. edodes → A. aegerita
₹ 0.4 → P. ostreatus → P. citrinopileatus	Ŭ 20 - M	- - -A. aegerita - P. ostreatus - P. citrinopileatus	20 -	-+ P. ostreatus -+ P. citrinopileatus
0.2 - Vit C - Vit E		-⊕ Vit C -→ Vit E		- C -EDTA
0 5 10 15 20 Concentration (mg ml ⁻¹)		10 15 20 tration (mg ml ⁻¹)	Col	10 15 20 ncentration (mg ml ⁻¹)
1.6 (E		••	(C) 120 -	(C)
1.4 -	80 -		100 -	Ð
	(%) 70 - 1	×	(%) 80 - 7 80 - 7 80 -	
		Ð	apiliti	×
und pole / / /	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	→L. edodes	the elating	→ L. edodes
S Q Q Q Q Q Q Q Q Q Q Q Q Q	00 CC	- - -A. aegerita - <u>→</u> -P. ostreatus	5	- A. aegerita - ↓ P. ostreatus
0.2 + Trolox	20 - 10 0	- ×− P. citrinopileatus -⊕-Vit C - Vit E	20 -	- -EDTA
0 5 10 15 20	0 *	10 15 20		10 15 20
Concentration (mg ml ⁻¹)	Concent	tration (mg ml ⁻¹)		(C)
90 -			90 -	
			80	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	oility (%		j) filt	
	60			
reget and the second s	- ob graden	-→ L. edodes -=-A. aeaerita		-→L. edodes - - -A. aegerita
20 - → P. ostreatus → P. citrinopileatus	20	→ P. ostreatus → P. citrinopileatu	15 20 -	- <u>→</u> P. ostreatus - × P. citrinopileatus

Table 2. EC ₅₀ values of various extracts fr	om L. edodes, A. aegerita	a, P. ostreatus and P. c	itrinopileatus		
Compound	EC ₅₀ value ^a (mg/ml)				
	L. edodes	A. aegerita	P. ostreatus	P. citrinopileatus	
Water					
Antioxidant activity	2.12±0.11B ^b	2.43±0.22A	2.01±0.13C	2.26±0.23B	
Reducing power	1.42±0.05C	1.78±0.15A	1.65±0.06B	1.38±0.07C	
Scavenging ability on DPPH radicals	1.82±0.03B	3.56±0.08A	3.01±0.02A	1.61±0.15B	
Chelating ability of ferrous ions	2.48±0.19B	2.69±0.09A	2.28±0.13C	2.56±0.01B	
Ethanol					
Antioxidant activity	3.34±0.09B	3.67±0.05A	2.77±0.02C	2.98±0.13C	
Reducing power	2.11±0.12B	2.41±0.13A	1.99±0.04C	2.32±0.09B	
Scavenging abiliy on DPPH radicals	2.05±0.07A	0.78±0.17C	1.85±0.09B	1.69±0.01B	
Chelating ability of ferrous ions	6.23±0.11B	6.86±0.09A	5.76±0.23C	6.72±0.12A	
Ethyl acetate					
Antioxidant activity	2.75±0.04A	2.78±0.09A	2.12±0.13C	2.34±0.17B	
Reducing power	0.98±0.18B	1.21±0.08A	0.88±0.09C	1.18±0.01A	
Scavenging ability on DPPH radicals	2.87±0.06A	2.84±0.21A	2.81±0.02A	2.93±0.14A	
Chelating ability of ferrous ions	4.87±0.12B	5.23±0.14A	3.99±0.05C	5.09±0.11A	
^a EC ₅₀ value, the effective concentration a	it which the antioxidant a	activity was 50%; the a	bsorbance was 0.5 for	reducing power;	

1,1-diphenyl-2-picrylhydrazil (DPPH) was scavenged by 50%; and ferrous ions were chelated by 50%, respectively. EC_{50} value was obtained by interpolation from linear regression analysis. ^bEach vaue is expressed as mean±SE (*n* = 3). Means with the same letter within the same row are significantly different (p < 0.05).

^cObtained by extrapolation from linear regression analysis.

The antimicrobial activities of *L. edodes, A. aegerita, P. ostreatus* and *P. citrinopileatus* ethanol extracts and standard antibiotics was quantitatively assessed by the presence or absence of clear zones indicating strong inhibition, and hazy (partial) inhibition zones, as given in Table 3. To determine antimicrobial activities , mushrooms were tested against Gram-negative (*S. typhimurium* and *E. coli*) bacteria, Gram-positive bacteria (*B. subtilis, B. cereus* and *S. aureus*) and yeasts (*C. albicans* and *Sch. pombe*). Among the selected bacteria studied, extracts inhibited the growth of Gram-positive bacteria slightly better than Gram-negative bacteria. The ethanol extracts exhibited clear inhibition zones only against fungi *C. albicans* and *Sch. pombe*. Furthermore, hazy inhibition zones were obtained against all tested bacteria except *B. cereus* and *B. subtilis* in the case of *P. ostreatus* extracts.

Bacteria/Fungi	L.	А.	Ρ.	Ρ.	Chloramphenicol	Nystatin
	edodes	aegerita	ostreatus	citrinopileatus		
Bacillus cereus	3+*	3+*	-	+*	4+	-
Bacillus subtilis	3+*	3+*	-	2+*	3+	-
Staphylococcus aureus	3+*	3+*	2+*	3+*	4+	-
Salmonella typhimurium	3+*	3+*	2+*	2+*	4+	-
Escherichia coli ATCC 35218	3+*	2+*	+*	2+*	4+	-
Candida albicans	3+	4+	3+	+	-	3+
Schizosaccharomyces pombe	2+	2+	2+	+	-	2+
Symbols: *hazy zone; diai 20 mm); 4+ high level of activity (21	neter of ir	hibition zor	ition	l of activity (7-10) mm); 2+ (11 to 15	5 mm); 3+ (10

Conclusions

- The aim of this research was to extend knowledge of nutritional and nutraceutical quality of commercially cultivated mushrooms consumed in Croatia
- Total phenols were the major antioxidant components found in all four mushrooms extracts, while vitamins were found in small amounts.
- \geq EC₅₀ values of extracts showed descending order: ethyl acetate > ethanol > water
- Results of this study showed that water extract has maximum antioxidant and antimicrobial properties, which are potentially useful for overall health and nutritional purposes.

REFERENCES

1.Barros, L., Cruz, T., Baptista, P., Estevinho, L. E., Ferreira, I. C. F. R. (2008a) Wild and commercial mushrooms as source of nutrients and nutraceuticals. *Food Chem. Toxicol.* **46**, 2742-2747.

2. Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. E., Ferreira, I. C. F. R. (2008b) Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. *J. Agric. Food Chem.* **56**, 3856-3862.

3. Ramesh, C., Pattar, M. G. (2010) Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of Western Ghates of Kamataka, India. *Pharmacogn. Res.* **2**, 107-112.

4. Smith, J. E., Rowan, N. J., Sullivan, R. (2002) Medicinal mushrooms: A rapidly developing area of biotechnology for cancer

Fig. 1. Reducing power (A), DPPH scavenging ability (B), and c helating ability (C) of hot water (1),

therapy and other bioactivities. *Biotechnol. Lett.* 24, 1839-1845.

Smith, J. E., Rowan, N. J., Sullivan, R. (2002) Medicinal mushrooms: A rapidly developing area of biotechnology for cancer

therapy and other bioactivities. *Biotechnol. Lett.* **24**, 1839-1845.

5. Dimitrios, B. (2006) Sources of natural phenolic antioxidants. Trends Food Sci. Tech. 17, 505-512.