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Curcumin, a natural ingredient present in turmeric rhizome is known for its 

various therapeutic activities such as antioxidant, anti-inflammatory, 

anticancer, antidiabetic, NF-kB activation suppresser. The hydrogenated 

derivative of curcumin, i.e., tetrahydrocurcumin, is also found to reveal the 

same activities. Moreover, the pro-oxidant effect of curcumin is reported, 

whereas tetrahydrocurcumin does not show any pro-oxidant effects. This 

contrasting behaviour of the two is attributed to their structures, because 

conjugation is involved only in curcumin, not in the tetrahydrocurcumin. It can 

be evidently concluded that double bonds affect the keto-enol ratio of the 

molecules and are therefore responsible for the degradation of curcumin, 

whereas tetrahydrocurcumin remains stable. Nevertheless, these double bonds 

are liable to affect the kinetics of beneficial activities of curcumin and 

tetrahydrocurcumin. 
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Introduction 

 

Tetrahydrocurcumin, hexahydrocurcumin and 

octahydrocurcumin are the metabolites of curcumin. 

Synthetically, they are obtained by the reduction of 

curcumin (Somparn et al., 2007; Ishida et al., 2002). 

These hydrogenated derivatives of curcumin display 

the same beneficial activities as shown by curcumin 

(Anand et al., 2008). Amongst these, 

tetrahydrocurcumin has the same reactive sites as 

that of curcumin viz. two ortho-methoxy phenolic 

groups and a reactive methylene group (Sugiyama 

et al., 1996). However, the rate of beneficial 

activities of tetrahydrocurcumin and curcumin is 

different. In some cases, tetrahydrocurcumin is 

superior to curcumin (Osawa et al., 1995; Somparn 

et al., 2007; Murugan et al., 2008; Hoehle et al., 

2006). On the other hand, in some studies, curcumin 

is found to be better than tetrahydrocurcumin 

(Nakamura et al., 1998; Pan et al., 2000).  

Also, it is observed that curcumin undergoes 

autoxidation and reveals pro-oxidant effects 

(Semwal et al., 1997; Rege et al., 2012), whereas 
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tetrahydrocurcumin is devoid of pro-oxidant 

potential (Prabhu et al., 2011; Aggeli et al., 2013; 

Aggarwal et al., 2015). This remarkable discrepancy 

is mainly because of the variation in their structures 

and the effect of the medium. In this review paper, 

the difference in the chemistry of curcumin and 

tetrahydrocurcumin has been discussed. Also, the 

effect of medium on the activities of the two is 

studied.  

  

Structure-activity relationship of curcumin and 

tetrahydrocurcumin 

 

Role of diene moiety in tetrahydrocurcumin 

 

Tetrahydrocurcumin is obtained from curcumin by 

selective reduction of double bonds in the heptane 

linkage (Wagner et al., 2013). Structurally, 

curcumin (1) contains double bonds present in the 

heptane chain, while tetrahydrocurcumin (2) is 

devoid of double bonds present in the heptane chain 

(Fig. 1).  
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Fig. 1. Structures of curcumin and tetrahydrocurcumin 

 

However, these double bonds, i.e., diene moiety plays 

a crucial role in making tetrahydrocurcumin 

chemically different than curcumin. Curcumin is 

yellow in colour, whereas tetrahydrocurcumin is 

colourless (Nakamura et al., 1998). Thus, the diene 

moiety acts as a chromophore imparting colour to the 

curcumin. Regarding the solubility, curcumin is more 

lyophilic than tetrahydrocurcumin, while 

tetrahydrocurcumin is more lyophobic than curcumin 

(Khopde et al., 2000). Curcumin acts as a Michael 

acceptor due to diene moiety (Anand et al., 2008). 

Tetrahydrocurcumin is incapable to form Michael 

adducts (Trivedi et al., 2020). 

The beneficial activities of curcumin take place by the 

chelating effect of the diketone moiety with metal ions 

(Tomeh et al., 2019) or by hydrogen atom donation 

from active methylene group (Jovanovic et al., 1999; 

Priyadarsini et al., 2003). The former mechanism is 

enhanced due to the presence of the electron-donating 

ability of diene moiety and the later mechanism is 

enhanced due to the presence of the diene moiety, 

which is responsible for the interconnectivity between 

the ortho-methoxy phenolic groups and the diketo 

moiety. Consequently, the radical formed due to 

hydrogen atom donation is stabilized (Sandur et al., 

2007). Moreover, the diene moiety affects the polarity 

of the molecules. Curcumin is more polar than 

tetrahydrocurcumin (Somparn et al., 2007). It has been 

observed that the polar constituents can offer better 

hydrogen atom donation than non-polar constituents 

(Oboh et al., 2008). Accordingly, the chelating effect 

and the rate of stabilization of radical must be less for 

tetrahydrocurcumin than curcumin.  

Owing to the presence of β-dicarbonyl moiety, 

tetrahydrocurcumin exhibits keto-enol tautomerism 

similar to curcumin (Wagner et al., 2013; Girija et al., 

2004) (Fig. 2). The enol tautomers of curcumin and 

tetrahydrocurcumin are shown by structures (3) and 

(4), respectively. 

The other resonating structures of curcumin stabilized 

due to diene moiety (Rege et al., 2019) are shown in 

Fig. 3. 
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Keto form                                                                  Enol form 

 

 

 

 
2                                                                                4 

Keto form                                                                  Enol form 

 
 

 

Fig. 2. Keto-enol tautomerism of curcumin and tetrahydrocurcumin 
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Fig. 3. Zwitterions formed by curcumin 

 

Structures (5) and (6) resemble enolic form. Since 

tetrahydrocurcumin is devoid of diene moiety, the 

formation of zwitterions similar to (5) and (6) is ruled 

out. As a result, the equilibrium shift towards enol 

tautomer is lower in tetrahydrocurcumin than that of 

curcumin. Consequently, the enol proportion of 

tetrahydrocurcumin is less than that of curcumin 

(Sandur et al., 2007).  

 

Effects of medium on the activity 

 

Curcumin imparts beneficial activities in the acidic or 

polar medium when the activity of keto tautomer 

predominates, i.e., when curcumin gets stabilized, 

whereas it is susceptible to degradation in the basic or 

non-polar medium when the activity of enol tautomer 

predominates (Rege et al., 2019). Hence, under 

stabilizing conditions, viz. acidic or polar medium, the 

rate of activity of curcumin is more than that of 

tetrahydrocurcumin. Furthermore, 

tetrahydrocurcumin is chemically more stable than 

curcumin (Hoehle et al., 2006). It is stable at neutral 

and basic pH (Aggarwal et al., 2015).  
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(a) Radicals formed by curcumin 
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(b) Radical formed by tetrahydrocurcumin 

 
Fig. 4. Radicals formed by curcumin and tetrahydrocurcumin 
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Basic medium brings about the degradation of 

curcumin, making it inactive (Tonnesen and Karlsen, 

1985). Now, in non-polar medium, the ortho-methoxy 

phenolic groups take up the reaction site and hydrogen 

atom donation occur through phenolic moiety to form 

an oxy radical (Jovanovic et al., 1999). Curcumin as 

well as tetrahydrocurcumin form oxy radical. The oxy 

radical formed in curcumin (7) gets converted to more 

stable carbon radicals (8) and (9), which take up 

oxygen accounting for the autoxidation (Rege et al., 

2019) (Fig. 4). The oxy radical formed by 

tetrahydrocurcumin (10), unlike curcumin, does not 

get converted to carbon radicals due to absence of 

conjugation and hence, tetrahydrocurcumin does not 

undergo autoxidation. 

Thus, 𝛼, 𝛽-unsaturated carbonyl moiety of curcumin 

is responsible for the production of reactive carbon 

species (Malik and Mukherjee, 2014; Das and Das, 

2002). Hence, in the non-polar medium, curcumin 

displays a pro-oxidant effect whereas 

tetrahydrocurcumin does not. Consequently, under 

basic or non-polar medium, the rate of beneficial 

activities of tetrahydrocurcumin is more than that of 

curcumin. 

 

Conclusion 
 

Tetrahydrocurcumin varies structurally from 

curcumin in lacking the double bond. However, these 

double bonds perform the key role in determining the 

keto-enol ratio as well as the rate of activities. It can 

be concluded that under polar or acidic conditions, the 

rate of beneficial activities of curcumin is more than 

that of tetrahydrocurcumin. Under basic or non-polar 

conditions, double bonds promote the degradation of 

curcumin. However, in basic medium, curcumin 

cannot impart beneficial activities as it undergoes 

degradation. Under non-polar conditions, curcumin 

exhibits pro-oxidant effect as initially formed oxy 

radical gets converted to carbon radicals whereas 

tetrahydrocurcumin forms oxy radical which does not 

get converted to carbon radicals. It is confirmed that, 

besides the main reactive sites, the other functional 

groups also contribute to determine the rate of activity 

of the molecule. Thus, the structure-activity 

relationship makes an important reflection for 

evaluating the rate of activities of curcumin and 

tetrahydrocurucmin. Further research needs to be done 

to determine the role of diene moiety, on which the 

entire chemistry is based. 
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