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ABSTRACT

Bayes network modelling for structural causal analysis between wine
physicochemical data and quantitative human quality blind assessments is
applied. The large dataset of white and red "Vinho Verde" wine samples
from Portugal, which was available from an open data repository for
machine learning at the University of California at Irving, was analysed.
The dataset contains 4898 white and 1599 red samples evaluated by blind
tastes by a minimum of 3 sensory assessors and 12 physicochemical
properties. The casual effects of wine analytic data on human quality
evaluations are evaluated numerically by Bayes neural networks for
adjusted sets of the covariates as marginal distributions and presented
graphically as partial dependence plots. Structural causal analysis revealed
important differences between the most important variables for quality
predictions and the individual causal effects. Bayes neural network models
of the partial dependencies show more pronounced nonlinear effects for red
wines compared to white wine quality. The artificial intelligence models
with boosted random decision tree forests for untrained wine samples yield
a 5% relative standard error of predictions compared to 12% for the linear
models and ordinary least squares estimation. For red wine, the most
important direct causal quality effects are caused by alcohol, volatile
acidity, and sulphates. Alcohol improves quality with a maximum plateau
at 14%, while volatile acidity has a strong proportional negative effect. The
effect of sulphates is highly nonlinear with maximum positive effect at a
concentration of 1 g/L of K,SOa. For the white wine samples causal effects
are linear with positive effects of alcohol and negative effects of volatile
and fixed acidity. The developed structural causal model enables
evaluation of targeted wine production interventions, named as “doing x,
do(x) models”, as restructured adjusted Bayes networks. It leads to
potential applications of artificial intelligence in wine production
technology and process quality control.
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Introduction

Food companies designing new products typically
must integrate and balance decisions based on data
from sensory panels, consumer preference panels, and
laboratory analytical data. Consumers’ perception of
food quality and decision on which product to buy is
the principal causal motivation to study the functional
relationship between subjective evaluations from
panel quality tests and objective reproducible data
from analytical instrumentation and applied process

“Corresponding author E-mail: zelimir.kurtanjek@gmail.com (retired)

technology parameters. Hence, adjusting food product
quality to consumer's perception is the key factor in
marketing and strategy to gain a company's market
share leading to higher profit margins. Food quality
and safety are major objectives which require
advanced process automation, robotics and artificial
intelligence (Al). These aspects of 4-the industrial
evolution are becoming the key trends in the modern
food industry. Presently, numerous modern
techniques, including electronic noses and tongues,
computer vision, IR and NIR spectroscopy, spectral
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imaging, and photoacoustic, have been applied to
monitor food attributes. In online production lines,
these techniques are 10T (internet of things) devices as
a part of industrial information structure providing
“Big Data", i.e., large amounts of interrelated digital
information (Singham et al., 2015; Bicani¢ et al.,
2015; Zhou et al., 2019; Sahni et al., 2021).

Wine is a typical product for which market demand
and pricing are in a wide range of values and strongly
depends on quality perception largely evaluated by
wine human experts tasting. Wine quality traits, such
as sensory profile and colour, are products of complex
interactions between grape genomics, macro and
micro soil composition, local climate environment and
seasonal weather prognosis, management, and
winemaking practises. Especially important in wine
sensory perception is the effect of its aroma. Wine
aroma is a chemically complex interaction produced
by the simultaneous perception of multiple volatile
compounds and it determines the personal sensory
perception of quality. Particularly, the objective wine
guality classification according to variety and region
is an important issue, because it is an easily adulterated
product in terms of dilution of wines with water, the
addition of alcohol, mislabelling, and blending with,
or replacement by, wine of lesser quality. Objective
guality modelling enables optimal wine coupage or
assemblage for harmonising from different vintages
before bottling. However, human quality evaluations
can be influenced by biases due to cultural preferences
and individual personal preferences. To eliminate
subjective human interventions and possible errors,
numerous instrumental methods and statistical
software tools are integrated into production decision
support systems, aiding the accuracy, speed and
guality of the oenologist performance. Applied are
UV, VIS, NIR, FTIR spectroscopic methods, gas
chromatographic/mass spectrometric analysis (HS-
SPME-GC/MS) of volatile aroma compounds,
electronic nose and tongue, providing multi-parameter
analysis of samples within minutes, eliminating the
need to outsource chemical analysis and allowing on-
line control and real-time decision making during the
winemaking process. Multi-sensor, low-level data
fusion can provide a more comprehensive and more
accurate vision of results compared with the study of
simpler data sets from individual techniques. Data
fusion from different instrumental platforms results in
an enriched data matrix (digital data frame),
integrating information from heterogeneous sources.
Data fusion integrates information from multilevel
instrumentation and human expert quality evaluation
and is applied for machine learning (ML) modelling,
Al production decision support, and causal analysis
between instrumental data and human quality

perception (Legin et al., 2003; Rodriguez-Mendez et
al., 2016; Luki¢ and Horvat, 2017; Izquierdo-Llopart
and Saurina, 2021). Also, Al facilitates synergism
between experience and recent progress in technology.
It can be applied to the development of technological
inventions, for example, the application of ultrasonic
processing (Luki¢ et al., 2020). From a process control
point of view, Al provides tools for the advanced
prediction of quality through recorded patterns
through seasons to predict quality traits to
winegrowers enabling interventions close to harvest
and before winemaking (Fuentes et al., 2020). Al
neural networks (NN) and support vector machines
(SVM) models based on mid-infrared spectroscopy
have been applied to prevent and manage stuck and
sluggish wine fermentation (Hernandez et al., 2021).
Among numerous ML models applied for
physicochemical wine quality prediction are support
vector machines (SVM), k-nearest neighbours (k-
NN), genetic algorithm (GA), naive Bayes (NB),
decision tree (DT), random forest (RF), artificial
neural networks (ANN), partial least squares (PLS),
and ordinary least square (OLS). Based on the
literature, SVM and RF have proved to be the best
models (Chiu et al., 2021). However, all of these ML
models are knowledge agnostic, and their prediction
performances are data set dependent.

Potential systemic errors of ML models are
surmounted by probabilistic Bayes belief network
(BN) models which integrate and synergize
fundamental knowledge with big data sets. Their
application in food technology and science is sporadic,
but their basic advantages enable transparent inference
through graphical representation and reasoning with
uncertain knowledge. In contrast to supervisory
input/output ML models (neural networks, random
forest, fuzzy logic), BN models are based on joint
probability function, providing inverse inference and
answering questions about about values that are likely
to provide target food quality (Corney, 2000; Corney,
2001). The advantage of BN modelling for wine
quality has been proved by big data analysis across
multiple vintages to define the characteristics of
outstanding 21°%'century Bordeaux wines. The analysis
is based on data of 985 binary attributes, an additional
14 and 34 continuous attributes covering All Bordeaux
(14,349 wine) and the 1855 Bordeaux datasets (1359
wines) to build a model for a wine grade category
prediction. The derived BN model outperforms SVM
by increasing quality classification accuracy,
precision, and the F-score (Dong et al., 2021).

This work aims to provide a potential scientific
contribution to understanding wine quality data by
applying artificial intelligence (Al) methodologies.
The main focus is the application of structural causal
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modelling (SCM) with deep learning, providing an
estimation of the causal effects of intervention
decisions in production on wine quality. The described
methodology is generally important in the application
of causal artificial intelligence in food science and
technology.

Materials and methods
Data

This work is a causality study of the impact of
physicochemical properties on sensory panel quality
scores based on a large wine quality data set, available
on the publicly available repository machine learning
platform at the University of Californiaat Irving (UCI)
(UC Irvine 2009; Cortez et al., 2009). The data set

30f12

contains 1599 red and 4989 white wine sample
variants “Vinho Verde” from the northwestern region
of Portugal. The analytical data were measured at the
wine certification phase to prevent illegal adulteration.
Each subset contains 11 physicochemical tests and
average human sensory scores in the range from 0 to
10, obtained by 3 independent evaluations. The data
were recorded from May 2004 to February 2007 using
only protected designation of origin samples tested at
the official certification institute “CVRVV -Comissdo
de Viticultura da Regido dos Vinhos Verdes”. To
avoid human error and/or biases, each quality score is
recorded as the corresponding average value. Basic
statistics of the data are given in Table 1. The data set
has been used for comparative studies of various
algorithms for the accuracy of the quality predictions
and classification to identify statistical outliers or
abnormalities implying possible product adulterations.

Table 1. Basic statistics of physicochemical parameters and quality scores for the red and white “Vinho Verde” wines data.

Red wine  / N=1599 samples . .
min max median mean
White wine / N=4898 samples
fixed acidity / g tartaric acid L1 460 1590 7.90 8.32
3.80 14.20 6.80 6.85
volatile acidity / g acetic acid L1 012 1.58 052 053
0.08 1.10 0.26 0.28
S . 1. 2 2.54
citric acid /g L 0.00 00 0.26 5
0.00 1.66 0.32 0.33
residual sugar /g L* 0.90 15.50 2.20 2.54
0.60 65.80 5.20 6.39
chlorides /g NaCl L™ 0.01 061 0.08 0.09
0.01 0.35 0.04 0.05
L 1. 72. 14. 15.1
free sulphur dioxide /mg S L 00 0 0 >10
2.00 289.00 34.0 35.31
total sulphur dioxide /mg S L 6.00 289.00 38.00 4647
0.98 1.04 0.99 0.99
. . 1. . .
density / g mL: 0.99 00 0.99 0.99
0.98 1.04 0.99 0.99
2.74 4.01 31 31
pH 0 3.3 3.3
2.72 3.82 3.18 3.19
sulphates /g K2SOs L1 0.33 14.90 10.20 10.42
0.22 14.20 10.40 10.51
alcohol / % 8.40 14.90 10.20 11.10
8.00 14.20 10.40 10.51
quality / 0-10 3.00 8.00 6.00 5.60
3.00 9.00 6.00 5.88
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Methods

Numerous results of Al methods applied for the
prediction and model analysis of wine production and
guality assessment are reported in the literature.
Applied regression models for quality prediction are
multivariate linear ordinary least squares (OLS)
regression, neural networks (NN), and support vector
machines (SVM). The SVM model vyielded the
outperforming performance argued due to the training
phase yielding global optimum opposite to NN local
solutions (Cortez et al., 2009). Decision trees (DT) and
Naive Bayes (NB) networks are applied for
classification approaches to quality predictions.
Statistical analysis of classification performance
shows that the DT algorithm is more accurate than BN,
especially for the red wine samples. Analysis of the
physicochemical feature importance shows that
alcohol and volatile acidity contribute mostly to
guality. Also, the models indicate that white wines are
more sensitive to physicochemical variations
indicating the need for close monitoring and control
during the production process (Appalasamy et al.,
2012). The genetic algorithm is applied for finding a
useful hybrid model for wine quality prediction (Chiu
et al., 2021). Grid search applied for improvement of
classification by optimal tuning of NN machine
learning algorithms yielded improved accuracy over
SVM and NB models for both red and white wine
datasets (Kothawade, 2021). Besides deterministic
and crisp logic ML models, fuzzy logic reasoning is
applied to model human perception of wine quality.
Non-parametric fuzzy inductive reasoning (FIR)
methodology with an ML approach outperforms NN
and SVM predictions. From the training process of
FIR models, key important parameters inferred are
alcohol, fixed acidity, free sulphur dioxide, residual
sugar and volatile acidity (Nebot et al., 2015). Synergy
effects, due to the nonlinear interaction of the
physicochemical parameters, are inferred by
extending the least absolute shrinkage and selection
operator (LASSO) models. 20 nonlinear interactions,
guadratic terms and bivariate products of the key
parameters are included. The nonlinear effects proved
to be significant and, compared to linear models
yielded, improved quality predictions (Nelson, 2020).
Published results of ML models show a strong
dependency of prediction accuracy on choices of
several untransparent algorithm parameters which are
not related to the nature of the data. Due to the
interaction between physicochemical parameters,
there are significant covariate correlations preventing
the determination of the importance of individual
parameter importance and causal relation to the human
perceived quality. To resolve the complexity of the

problem, here are proposed causal analyses based on
the Bayes network (BN) approach. The BN networks
are nonsupervised stochastic models of the joint
probability function. They are transparently presented
as directed acyclic graphs (DAG) of causal relations
between the covariates, i.e., the physicochemical
parameters and the quality. Causal functional relations
between covariates multivariate include linear and
nonlinear functions. The DAG graph connects
physicochemical variables X;, i = 1,2..11, and quality
Y as connected nodes with directed edges representing
conditional statistical dependencies. The nodes which
are not directly connected are conditionally
independent, however, they can be significantly
statistically correlated. Each node X represents a
random variable and is associated with the
corresponding  probability density function P
dependent on input nodes as its parent (par) nodes Xk.
Based on conditional independencies relations the
global probability density function P can be factorised
into individual node probabilities corresponding to the
graph edges presented, i.e., modelled:
i=11
P(Y, Xy, X X00) = P(Vipar()) | | POilpar(xp) - (1)

i=1

The BN modelling is a two-stage process in which
firstly is determined a DAG structure, followed by the
estimation of local parameters for each individual
conditional probability function (Nagarajan et al.,
2013; Scutari and Denis, 2014; Kurtanjek, 2022). The
hypothesis of DAG structure is the most important
issue of the modelling and is inferred by deduction
from knowledge of the nature of the studied system,
and by statistical inference of conditional
independence from experimental data. The availability
of “Big Data” is important for the accurate estimation
of conditional independence and parameters of
probability functions. However, the structural
information required for DAG is not uniquely
determined only by data statistics. To find the DAG
structure from a set of alternative structures selected
the network structure with the best goodness-of-fit on
the whole data. The metric of Bayes Information
Criteria (BIC) evaluated as a balance between a model
evaluated the likelihood of a whole data set and model
complexity determined by the number of model
parameters and the number of samples is applied.

Unlike data scientist interest for model classification
and predictions P(Y|X), to food scientists and
engineers the main focus is the determination of causal
relationships between potential action (intervention)
and expected effect by “doing”, i.e., P(Y|do(X=x))
(Pearl and Mackenzie, 2018; Pearl et al., 2021).
Determination of causality enables scientists and
technologists to make decisions and apply control
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action to improve a production process. This work is
a study of the causal impact between wine
physicochemical properties and oenologist quality
evaluations. Due to the strong correlation between
covariates observation of causal effects is confounded
and usually biased just by the usual correlation of
observations. Graphical structural presentation of BN
models enables detection and prevention of noncausal
data “back door flows”, resulting in the erroneous and
possibly contradictory inference of causal relations.
By imposing action (intervention) probability
distributions are changed:

P(Y|X = x) # P(Y|do(X = x)) 2)

J. Pearl defined the back-door criterion for blocking
confounding effects by closing pathways responsible
for the interference of covariates with causal action
(Pearl and Mackenzie, 2018; Pearl et al., 2021). Back-
door criterion defines adjustment sets Z of covariates
relative to an ordered pair (X;, X;) if: (i) no node in Z is
a descendant of X;, and (ii) Z blocks every path
between X;and X; that contains an arrow into X;. If the
effect of X on Y is identifiable, with available
observed covariates, then the deconfounded BN model
becomes a structural causal model (SCM), with the
probability distribution of the causal effect given by:

Z

P(Y|do(x)) = z P(y|x,z) P(2) 3

ZEZ

Although numerical evaluation of causal inference is
very demanding, the availability of DoWhy Python
package on the free and open-source platform GitHub
makes it applicable to food technology researchers.
DoWhy is a state-of-the-art application of refutation
programming interface (API) which automatically
tests causal assumptions for any estimation method,
thus making inference more robust and accessible to
non-experts (Pearl et al., 2021).

Results

The data sets for red and white wine qualities are
observational (non-random) and are separately
analysed and applied for the development of the
models for quality predictions and causal analysis.
Developed linear regression models are estimated by
ordinary least squares (OLS) algorithm, non-linear
random forest (RF) for quality classification and
regression and structural causal model (SCM) based
on Bayes networks (BN). The models for prediction
are evaluated externally by training to test data
splitting by k-folding and boot-strapping, while causal

models are focused on internal structural validation
evaluation of adjustment sets to block confounding by
backdoor  non-causal  “flow” of statistical
dependencies of interrelated physicochemical
properties. To minimise confounding initially, the data
sets are scanned for variable inflation factors (VIF)
(Lin et al., 2021). VIF factors measure the extent by
which estimated variances of regression model
parameters are “inflated” due to the existence of
multicollinearity among the predictor variables A VIF
of 1 corresponds to a lack of correlation among the k-
th predictor and the remaining predictor variables, and
hence the variance of the corresponding regression
parameter and the rest of the model parameters are
deflated. As a rule of “thumb” VIF value exceeding 4
needs variable adjustments. The VIF values for red
and white wine data sets are listed in Table 2. The
variable density has the highest VIF values, 6.34 and
28.23 corresponding to red and white wines. From a
causal point of view, density is a collider conditioned
on residual sugar and alcohol. At the same time, it is
plausible to assume that human sensory response is
sensitive to small but statistically significant density
variation. Hence, the original data sets are adjusted by
elimination of the variable density. The impact of the
collider removal on each of the predictor VIF value is
significant decrease, on average from 3.10 to 1.94 and
5.65 to 1.43 for red and white wines correspondingly.
Prior to causal analysis, predictive models for quality
regression by linear ordinary least squares (OLS),
nonlinear regression and classification by machine
learning algorithms (RF), and determination of the
predictor variable importance are developed
(Breiman, 2001; Liaw and Wiener, 2002; Chen et al.,
2016; Breiman and Cutler, 2022; Chen et al., 2023).
Statistical metrics of the models are given in Table 3.
Accuracies of the regression models are evaluated by
relative average root square error (RMSE %) with
untrained 5-folded data sets. The average RMSE % by
linear OLS is 12.7% and is not affected by the collider
removal, however, it significantly changes the model
parameter estimates and their significance. It is
important to note that estimated coefficients of the
linear model may not have any causal meaning, i.e.,
cannot be applied to technological decisions. For
nonlinear regression, extreme gradient boosting
algorithm (XGBoost) is applied (Chen et al., 2016;
Breiman and Cutler, 2022; Chen et al., 2023). Since
the XGBoost algorithm iteratively approaches the
maximum of the objective function by gradient
evaluation in functional space, it is generally
recommended for evaluation of predictor importance.
Average RMSE % are 5.13 and 4.17 for red and white
wine, respectively. The decrease in errors for factor
2.5 is due to the account of nonlinear predictor
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dependencies and their interactions. Random forest
(RF) algorithm is applied for multivariate prediction
of quality by classification and regression. RF
classification algorithm predicts a discrete variable
(quality classes from 0 to 10), while the regression
model predicts quality as a continuous function in the
range [0,1]. Since the random forest algorithm is based
on randomly selected subsets of data, the original data
sets are resampled to avoid class sampling bias by
yielding a uniform distribution of the quality classes.
For metrics of multivariate classification metrics, class
average relative accuracy, precision, recall and Fisher
guotient are applied, Table 3. Comparison of the
regression and classification models by decision
tree ensembles is on the average accuracy level
of 95%.

importance based on the trained quality predictive
Gradient boosting provided physicochemical models,
with relative scores depicted in Fig. 1. The first five
scores which account for about 90% of the total score
are presented. The main distinction between red and
white wines is in the most important variables. It
shows that for the prediction of red wine, quality is the
number of sulphates present in samples, but for white
wine quality, it is the level of alcohol. However, due
to strong interdependences between physicochemical
properties, the obtained variable importance scores for
predictions are different from causal importance.
Discovering causal relations from observational data
is complex and difficult, however, it is a main focus of
science (Pearl and Mackenzie, 2018; Pearl et al.,
2021).

Table 2. Variance inflation factors (VIF) for the original (un-adjusted) and adjusted models for the prediction of the quality of
the red and white wines

wine parameter
red/white

variance inflation factor

fixed acidity / g tartaric acid L
volatile acidity / g acetic acid L
citric acid /g L!

residual sugar /g L™

chlorides /g NaClI L™

free sulphur dioxide /mg S Lt
total sulphur dioxide /mg S L1
density / g mL™?

pH /

sulphates /g K2SO4 Lt

alcohol / %

average VIF /

VIF
un-adjusted adjusted
7.77 2,98
2.69 1.36
1.79 1.76
1.14 1.12
3.13 3.13
1.16 1.15
1.70 1.11
12.64 1.44
1.48 1.46
1.23 1.20
1.96 1.95
1.79 1.74
2.19 217
2.24 2.15
6.34 removed
28.23 collider
3.32 2.24
2.20 1.33
1.43 1.34
1.14 1.06
3.03 1.30
7.71 1.65
3.10 1.94
5.65 1.43

Table 3. Statistical metrics of the model fits for quality classification and regression prediction

model classification regression

method random forest RF RF OLS

wine accuracy % precision % recall % F RMSE % RMSE %
red 92.1 91.8 92.1 0.918 5.13 12.96

white 95.2 97.3 96.3 0.965 4.17 12.52
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sulphates

alcohol
volatile acidity

pH

chlorides

alcohol

free sulfur dioxide
volatile acidity
fixed acidity

total sulfur dioxide

- red
. white

0.0 0.1 0.2 0.3 0.4
Importance

Figure 1. Importance of the first five physicochemical variables for wine quality prediction by random forest classification and
with regression by the extreme gradient boosted random forest models

Table 4. Adjustment sets for prediction of wine quality by physicochemical properties

Quality Adjustment sets: Z
Predictor: X red wine
alcohol residual sugar total sulphur pH
dioxide
sulphates volatile acidity citric acid chlorides free
sulphur
dioxide
residual sugar citric acid
white wine
alcohol volatile acidity residual sugar
residual sugar citric acid
pH fixed acidity residual sugar chlorides
Red wine White wine

() conditional () output @ conditional parent @ unconditional parent

— significant - - + unsignificant

Figure 2. Directed acyclic graphs (DAG) of red and white wine data sets
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In principle, hypotheses of causal structures are
deducted from prior knowledge of natural laws of
physics and chemistry and induced from new
experimental and observed data. Besides statistical
estimation of causal effects, causal analysis is based
on structural knowledge represented as directed
acyclic graphs (DAG). In this work a constrained
inductive PC-stable algorithm is applied (Kalisch et
al., 2012; Kalisch et al., 2023; Scutari et al., 2023). The
algorithm starts with a complete, undirected graph and
deletes recursively edges based on tests of conditional
independence decisions. The inferred DAG networks
for the red and white wine sets are presented in Fig. 2.
The graphs are obtained with X? significance level
a=0.05. Depicted are the significances of the graph
edges (arcs) by which are measured change of score of
the network if the arc is not present (Breiman and
Cutler, 2022). The corresponding BN models are
validated by RMSE% of quality prediction with the
training data sets. 11.1% and 10.73% errors for the red
and white wine datasets are obtained. Since a linear
structured BN model, these values are close to the
values obtained by the linear unstructured OLS models
(Table 3). Somewhat smaller errors are likely due to
an increase of the degree of freedom by BN.
Inference of causality between physicochemical
variables Xi and wine quality Y from given DAG
networks requires d-separation, i.e., blocking of “back
door” non-causal interference. Required adjustment
sets Z satisfies the following conditions: (1) no
variable (graph node Xi) in Z is a descendent of Xi; (2)
Z blocks every pathway between Xiand Y that contains
an arrow pointing to X; (Pearl, 2021). Enumeration of
Z adjustment sets of the covariates, as given in Table
4, allows unbiased estimation of individual
physicochemical causal effects from observational
wine data (Textor et al., 2016; Textor et al., 2021).
Application of Bayes network (BN) structured models
and adjustment sets Z enables elimination of systemic
bayes, however random exogenous influence through
sampling and experimental errors are present in data
as a challenge for estimation of do(x) causality for
individual psycho-chemical parameters. Here are
applied Bayes neural networks (BNN) with a single
feedforward hidden layer to account for the
nonlinearity of causal dependences and quantify the
uncertainty associated with stochastic influences.

The Y=BNN(x,Z) are supervised models with
observed quality data Y, set x value of cause X, and Z
adjustment set of covariates, as given in Table 4. The
conditional probability of causal effect (Zhao and
Hastie, 2021; Jia, 2018; Scott, 2022) is defined by:

P(do(X =x)) = f P(Y(Z = 2))dP(2) (4)

The integral is evaluated by Gibb’s sampling of the
conditional probability function and averaging with N
samples for the red and white sets:

N
1
Yo = Z BNN(x,Zy) 5)
k=1

The causal functions are graphically presented as
partial dependency plots Fig. 3-4. In Fig. 3 causal
graphs for red wines are depicted. The graphs 3.1-3
correspond to the direct effects of alcohol, volatile
acidity and sulphates. Alcohol and sulphates are
conditioned on other endogenous variables, while
sulphates are unconditioned and are solely influenced
by unobserved exogenous variables. Alcohol and
fixed acidity are the most important causal variables
with positive and negative effects. Sulphates exhibit a
strong nonlinear effect with a distinct maximum and
considerable dispersion of prediction due to
unobserved exogenous variable(s). Effects of fixed
acidity, residual sugar and chlorides are depicted in
Fig. 3.4-6. Fixed acidity and chlorides have a direct
causal effect on quality, while residual sugar has an
indirect effect mediated by alcohol content. Effects of
fixed and volatile acidities are in balance resulting in
an increase of quality with an increase in fixed and
decrease of volatile acidity. The sensitivity of quality
to fixed acidity is considerably lower compared to
volatile acidity, and is highly dispersed possibly due
to interference with other endogenous variables and/or
influence of unobserved exogenous effects on fixed
acidity. Increase of residual sugar decreases quality of
red wine. However, it shows a maximum at 3 g L™
Causal effect of chlorides in red wine shows strong
nonlinearity. The increase of NaCl from negligible
small concentrations results in sudden decline in
quality for 25%. Causal graphs for white wine are
depicted in Fig. 4.1-6. Causal effects of alcohol,
volatile and fixed acidity are depicted in Fig.4.1-3.
Volatile acidity and alcohol have a direct causal effect
on quality, while the effect of fixed acidity is mediated
by pH. Alcohol is the most important causal variable
conditioned on residual sugar Fig. 4.5. Unlike red
wine, for white wine volatile and fixed acidity are
positively correlated, and an increase in acidity causes
a decrease in quality. Increase in pH, Fig.4.6, results
in an increase in quality. The effect of an increase of
chlorides proportionally decreases quality and is
highly dispersed at higher concentrations. Sulphates
are a network collider hence they have no effect on
white wine quality. However, for red wine sulphates are
important direct causal variable. A general observation is
that network of conditioned causalities for the white
wine dataset is more complex (interrelated) when
compared to the red wines.
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Conclusions

Inspection of the data sets by variable inflation factor VIF
analysis reveals the density as a common collider for red
and white wine samples. Adjustment of the original data
sets by removal of the collider decreases the average VIF
for the red data from 3.1 to 1.94, and for the white from 3.65
to 1.43. The adjustment has an insignificant increase in
trained RMSE errors. However, it significantly changes the
values and significances of the OLS model parameters and
significantly decreases RMSE with untrained “new” data.
The importance of nonlinearity and variable interactions are
inferred from the increase of the prediction accuracy from
the linear OLS model with RMSE= 90% to higher accuracy
RMSE=95% by random forest regression and classification.
The main conclusion of the causal analysis is the inference
of physicochemical variables which have a direct effect on
quality tests. Although the predictions by random forest ML
models have very high accuracy, relative RMSE = 5%, the
variable importance for prediction is not the most important
causal variable. Derived Bayes network models provide an
inference of the variables which have a direct effect on the
quality. For the red wine data set, the first three most
important variables for ML prediction are sulphur, alcohol,
and volatile acidity. However, the most important causal
effect is associated with volatile acidity, alcohol and
sulphur. Also, the most important variables for ML
prediction of the white wine data set are alcohol, free
sulphur dioxide, and volatile acidity, while the most
important causal are alcohol, volatile acidity and residual
sugar. Alcohol content has a distinctly positive effect on
human quality prediction. For the red wine data, sulphates
have a direct causal effect with a central maximum at 1 g
K2SO4/L. However, for the white wine, it is a collider and
has no effect on its quality.

Minimal adjustment sets are inferred by the BN “parent”
variables and enabled functional causal dependence.
Application of Bayes neural networks (BNN) enabled
graphical causal depictions as partial dependence plots. A
marked difference is that the red wine causality
dependencies are mostly nonlinear, while for the white are
approximately linear. The important outcome of the BNN
models is the evaluation of probability dispersions of the
causal predictions. They show heteroscedasticity, i.e.,
dependencies of variances of predictions on corresponding
concentrations.

The obtained high model prediction accuracy of 95 % and
the causal models have potentially important
technologically applicable interventions in the wine
industry. For example, it is a standard procedure to monitor
the grape sugar before harvesting and accordingly adjust
residual sugar in a production phase based on producer-
specific experience and ‘“standard” recommendations.
However, these traditional adjustments do not account of
varying covariates. The proposed causal model provides
predictions and optimisation with full knowledge of wine
analytics and controllable sugar level during fermentation
for the needs of a specific producer and vintage. The model
also provides the causal impact of other controllable
variables, such as volatile acidity produced during the

malolactic fermentation in red wine depending on the
engineer control activity of lactic bacteria.

Another important application of the model is the prediction
of the optimal “formula” for wine assemblage and
“coupage”. The model classification accuracy enables
adjustment of wine production to increase producer
revenues for targeted markets (sub-branding) that match
defined subpopulation preferences. Importantly, causal
Bayes network models can be also used in control
laboratories to check product adulteration, if a claim
declared on the label is truthful regarding the wine’s
vintage, geographical origin and/or non-declared sugar
addition or dilution with water.

Full potential of “big data” BN causal models is obtained
with complexity when physicochemical data are integrated
with other important technical parameters (temperature and
micro-oxygen profiles), soil chemistry, agrotechnical
measures, vineyard geography, local climate and key
genetic data. According to J. Pearl, causal hierarchy models
provide three basic levels of inference: (1) prediction of
simulated complex scenarios based on intuitive past
knowledge of vintage records; (2) intervention policies for
the improvement of agricultural measure in vineyards, post-
harvest treatment and wine fermentation control; (3) and
counterfactual inference of new production technology and
innovative specifications for wine increased quality and
revenue to targeted markets.
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