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Bayes network modelling for structural causal analysis between wine 

physicochemical data and quantitative human quality blind assessments is 

applied. The large dataset of white and red "Vinho Verde'' wine samples 

from Portugal, which was available from an open data repository for 

machine learning at the University of California at Irving, was analysed. 

The dataset contains 4898 white and 1599 red samples evaluated by blind 

tastes by a minimum of 3 sensory assessors and 12 physicochemical 

properties. The casual effects of wine analytic data on human quality 

evaluations are evaluated numerically by Bayes neural networks for 

adjusted sets of the covariates as marginal distributions and presented 

graphically as partial dependence plots. Structural causal analysis revealed 

important differences between the most important variables for quality 

predictions and the individual causal effects. Bayes neural network models 

of the partial dependencies show more pronounced nonlinear effects for red 

wines compared to white wine quality. The artificial intelligence models 

with boosted random decision tree forests for untrained wine samples yield 

a 5% relative standard error of predictions compared to 12% for the linear 

models and ordinary least squares estimation. For red wine, the most 

important direct causal quality effects are caused by alcohol, volatile 

acidity, and sulphates. Alcohol improves quality with a maximum plateau 

at 14%, while volatile acidity has a strong proportional negative effect.  The 

effect of sulphates is highly nonlinear with maximum positive effect at a 

concentration of 1 g/L of K2SO4. For the white wine samples causal effects 

are linear with positive effects of alcohol and negative effects of volatile 

and fixed acidity. The developed structural causal model enables 

evaluation of targeted wine production interventions, named as “doing x, 

do(x) models”, as restructured adjusted Bayes networks. It leads to 

potential applications of artificial intelligence in wine production 

technology and process quality control. 
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Introduction 

 

Food companies designing new products typically 

must integrate and balance decisions based on data 

from sensory panels, consumer preference panels, and 

laboratory analytical data. Consumers’ perception of 

food quality and decision on which product to buy is 

the principal causal motivation to study the functional 

relationship between subjective evaluations from 

panel quality tests and objective reproducible data 

from analytical instrumentation and applied process 
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technology parameters. Hence, adjusting food product 

quality to consumer's perception is the key factor in 

marketing and strategy to gain a company's market 

share leading to higher profit margins. Food quality 

and safety are major objectives which require 

advanced process automation, robotics and artificial 

intelligence (AI). These aspects of 4-the industrial 

evolution are becoming the key trends in the modern 

food industry. Presently, numerous modern 

techniques, including electronic noses and tongues, 

computer vision, IR and NIR spectroscopy, spectral 
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imaging, and photoacoustic, have been applied to 

monitor food attributes. In online production lines, 

these techniques are IoT (internet of things) devices as 

a part of industrial information structure providing 

“Big Data'', i.e., large amounts of interrelated digital 

information (Singham et al., 2015; Bičanić et al., 

2015; Zhou et al., 2019; Sahni et al., 2021). 

Wine is a typical product for which market demand 

and pricing are in a wide range of values and strongly 

depends on quality perception largely evaluated by 

wine human experts tasting. Wine quality traits, such 

as sensory profile and colour, are products of complex 

interactions between grape genomics, macro and 

micro soil composition, local climate environment and 

seasonal weather prognosis, management, and 

winemaking practises. Especially important in wine 

sensory perception is the effect of its aroma. Wine 

aroma is a chemically complex interaction produced 

by the simultaneous perception of multiple volatile 

compounds and it determines the personal sensory 

perception of quality. Particularly, the objective wine 

quality classification according to variety and region 

is an important issue, because it is an easily adulterated 

product in terms of dilution of wines with water, the 

addition of alcohol, mislabelling, and blending with, 

or replacement by, wine of lesser quality. Objective 

quality modelling enables optimal wine coupage or 

assemblage for harmonising from different vintages 

before bottling. However, human quality evaluations 

can be influenced by biases due to cultural preferences 

and individual personal preferences. To eliminate 

subjective human interventions and possible errors, 

numerous instrumental methods and statistical 

software tools are integrated into production decision 

support systems, aiding the accuracy, speed and 

quality of the oenologist performance. Applied are 

UV, VIS, NIR, FTIR spectroscopic methods, gas 

chromatographic/mass spectrometric analysis (HS-

SPME-GC/MS) of volatile aroma compounds, 

electronic nose and tongue, providing multi-parameter 

analysis of samples within minutes, eliminating the 

need to outsource chemical analysis and allowing on-

line control and real-time decision making during the 

winemaking process. Multi-sensor, low-level data 

fusion can provide a more comprehensive and more 

accurate vision of results compared with the study of 

simpler data sets from individual techniques. Data 

fusion from different instrumental platforms results in 

an enriched data matrix (digital data frame), 

integrating information from heterogeneous sources. 

Data fusion integrates information from multilevel 

instrumentation and human expert quality evaluation 

and is applied for machine learning (ML) modelling, 

AI production decision support, and causal analysis 

between instrumental data and human quality 

perception (Legin et al., 2003; Rodriguez-Mendez et 

al., 2016; Lukić and Horvat, 2017; Izquierdo-Llopart 

and Saurina, 2021). Also, AI facilitates synergism 

between experience and recent progress in technology. 

It can be applied to the development of technological 

inventions, for example, the application of ultrasonic 

processing (Lukić et al., 2020). From a process control 

point of view, AI provides tools for the advanced 

prediction of quality through recorded patterns 

through seasons to predict quality traits to 

winegrowers enabling interventions close to harvest 

and before winemaking (Fuentes et al., 2020). AI 

neural networks (NN) and support vector machines 

(SVM) models based on mid-infrared spectroscopy 

have been applied to prevent and manage stuck and 

sluggish wine fermentation (Hernandez et al., 2021). 

Among numerous ML models applied for 

physicochemical wine quality prediction are support 

vector machines (SVM), k-nearest neighbours (k-

NN), genetic algorithm (GA), naive Bayes (NB), 

decision tree (DT), random forest (RF), artificial 

neural networks (ANN), partial least squares (PLS), 

and ordinary least square (OLS). Based on the 

literature, SVM and RF have proved to be the best 

models (Chiu et al., 2021). However, all of these ML 

models are knowledge agnostic, and their prediction 

performances are data set dependent. 

Potential systemic errors of ML models are 

surmounted by probabilistic Bayes belief network 

(BN) models which integrate and synergize 

fundamental knowledge with big data sets. Their 

application in food technology and science is sporadic, 

but their basic advantages enable transparent inference 

through graphical representation and reasoning with 

uncertain knowledge. In contrast to supervisory 

input/output ML models (neural networks, random 

forest, fuzzy logic), BN models are based on joint 

probability function, providing inverse inference and 

answering questions about about values that are likely 

to provide target food quality (Corney, 2000; Corney, 

2001). The advantage of BN modelling for wine 

quality has been proved by big data analysis across 

multiple vintages to define the characteristics of 

outstanding 21stcentury Bordeaux wines. The analysis 

is based on data of 985 binary attributes, an additional 

14 and 34 continuous attributes covering All Bordeaux 

(14,349 wine) and the 1855 Bordeaux datasets (1359 

wines) to build a model for a wine grade category 

prediction. The derived BN model outperforms SVM 

by increasing quality classification accuracy, 

precision, and the F-score (Dong et al., 2021). 

This work aims to provide a potential scientific 

contribution to understanding wine quality data by 

applying artificial intelligence (AI) methodologies. 

The main focus is the application of structural causal 
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modelling (SCM) with deep learning, providing an 

estimation of the causal effects of intervention 

decisions in production on wine quality. The described 

methodology is generally important in the application 

of causal artificial intelligence in food science and 

technology. 

 

Materials and methods 
 

Data 

 

This work is a causality study of the impact of 

physicochemical properties on sensory panel quality 

scores based on a large wine quality data set, available 

on the publicly available repository machine learning 

platform at the University of California at Irving (UCI) 

(UC Irvine 2009; Cortez et al., 2009). The data set 

contains 1599 red and 4989 white wine sample 

variants “Vinho Verde” from the northwestern region 

of Portugal. The analytical data were measured at the 

wine certification phase to prevent illegal adulteration. 

Each subset contains 11 physicochemical tests and 

average human sensory scores in the range from 0 to 

10, obtained by 3 independent evaluations. The data 

were recorded from May 2004 to February 2007 using 

only protected designation of origin samples tested at 

the official certification institute “CVRVV -Comissão 

de Viticultura da Região dos Vinhos Verdes”. To 

avoid human error and/or biases, each quality score is 

recorded as the corresponding average value. Basic 

statistics of the data are given in Table 1. The data set 

has been used for comparative studies of various 

algorithms for the accuracy of the quality predictions 

and classification to identify statistical outliers or 

abnormalities implying possible product adulterations. 
 

Table 1. Basic statistics of physicochemical parameters and quality scores for the red and white “Vinho Verde” wines data. 

Red wine      / N=1599 samples 

White wine / N=4898 samples 
min max median mean 

fixed acidity / g tartaric acid L-1 
 4.60 15.90 7.90 8.32 

3.80 14.20 6.80 6.85 

volatile acidity / g acetic acid L-1 
 0.12 1.58 0.52 0.53 

0.08 1.10 0.26 0.28 

citric acid /g L-1 
0.00 1.00 0.26 2.54 

0.00 1.66 0.32 0.33 

residual sugar /g L-1 
0.90 15.50 2.20 2.54 

0.60 65.80 5.20 6.39 

chlorides /g NaCl L-1 
0.01 0.61 0.08 0.09 

0.01 0.35 0.04 0.05 

free sulphur dioxide /mg S L-1 
1.00 72.0 14.0 15.10 

2.00 289.00 34.0 35.31 

total sulphur dioxide /mg S L-1 
6.00 289.00 38.00 46.47 

0.98 1.04 0.99 0.99 

density / g mL-1 
0.99 1.00 0.99 0.99 

0.98 1.04 0.99 0.99 

pH/ 
2.74 4.01 3.31 3.31 

2.72 3.82 3.18 3.19 

sulphates /g K2SO4 L-1 
0.33 14.90 10.20 10.42 

0.22 14.20 10.40 10.51 

alcohol / % 
8.40 14.90 10.20 11.10 

8.00 14.20 10.40 10.51 

quality / 0-10 
3.00 8.00 6.00 5.60 

3.00 9.00 6.00 5.88 
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Methods 

Numerous results of AI methods applied for the 

prediction and model analysis of wine production and 

quality assessment are reported in the literature. 

Applied regression models for quality prediction are 

multivariate linear ordinary least squares (OLS) 

regression, neural networks (NN), and support vector 

machines (SVM). The SVM model yielded the 

outperforming performance argued due to the training 

phase yielding global optimum opposite to NN local 

solutions (Cortez et al., 2009). Decision trees (DT) and 

Naïve Bayes (NB) networks are applied for 

classification approaches to quality predictions. 

Statistical analysis of classification performance 

shows that the DT algorithm is more accurate than BN, 

especially for the red wine samples. Analysis of the 

physicochemical feature importance shows that 

alcohol and volatile acidity contribute mostly to 

quality. Also, the models indicate that white wines are 

more sensitive to physicochemical variations 

indicating the need for close monitoring and control 

during the production process (Appalasamy et al., 

2012). The genetic algorithm is applied for finding a 

useful hybrid model for wine quality prediction (Chiu 

et al., 2021). Grid search applied for improvement of 

classification by optimal tuning of NN machine 

learning algorithms yielded improved accuracy over 

SVM and NB models for both red and white wine 

datasets (Kothawade, 2021). Besides deterministic 

and crisp logic ML models, fuzzy logic reasoning is 

applied to model human perception of wine quality. 

Non-parametric fuzzy inductive reasoning (FIR) 

methodology with an ML approach outperforms NN 

and SVM predictions. From the training process of 

FIR models, key important parameters inferred are 

alcohol, fixed acidity, free sulphur dioxide, residual 

sugar and volatile acidity (Nebot et al., 2015). Synergy 

effects, due to the nonlinear interaction of the 

physicochemical parameters, are inferred by 

extending the least absolute shrinkage and selection 

operator (LASSO) models. 20 nonlinear interactions, 

quadratic terms and bivariate products of the key 

parameters are included. The nonlinear effects proved 

to be significant and, compared to linear models 

yielded, improved quality predictions (Nelson, 2020). 

Published results of ML models show a strong 

dependency of prediction accuracy on choices of 

several untransparent algorithm parameters which are 

not related to the nature of the data. Due to the 

interaction between physicochemical parameters, 

there are significant covariate correlations preventing 

the determination of the importance of individual 

parameter importance and causal relation to the human 

perceived quality. To resolve the complexity of the 

problem, here are proposed causal analyses based on 

the Bayes network (BN) approach. The BN networks 

are nonsupervised stochastic models of the joint 

probability function. They are transparently presented 

as directed acyclic graphs (DAG) of causal relations 

between the covariates, i.e., the physicochemical 

parameters and the quality. Causal functional relations 

between covariates multivariate include linear and 

nonlinear functions. The DAG graph connects 

physicochemical variables Xi, i = 1,2..11, and quality 

Y as connected nodes with directed edges representing 

conditional statistical dependencies.  The nodes which 

are not directly connected are conditionally 

independent, however, they can be significantly 

statistically correlated. Each node Xi represents a 

random variable and is associated with the 

corresponding probability density function P 

dependent on input nodes as its parent (par) nodes Xk. 

Based on conditional independencies relations the 

global probability density function P can be factorised 

into individual node probabilities corresponding to the 

graph edges presented, i.e., modelled: 

𝑃(𝑌, 𝑋1, 𝑋2, ⋯ 𝑋11) = 𝑃(𝑌|𝑝𝑎𝑟(𝑌)) ∏ 𝑃(𝑋𝑖|𝑝𝑎𝑟(𝑋𝑖))

𝑖=11

𝑖=1

 (1) 

 

The BN modelling is a two-stage process in which 

firstly is determined a DAG structure, followed by the 

estimation of local parameters for each individual 

conditional probability function (Nagarajan et al., 

2013; Scutari and Denis, 2014; Kurtanjek, 2022). The 

hypothesis of DAG structure is the most important 

issue of the modelling and is inferred by deduction 

from knowledge of the nature of the studied system, 

and by statistical inference of conditional 

independence from experimental data. The availability 

of “Big Data” is important for the accurate estimation 

of conditional independence and parameters of 

probability functions. However, the structural 

information required for DAG is not uniquely 

determined only by data statistics. To find the DAG 

structure from a set of alternative structures selected 

the network structure with the best goodness-of-fit on 

the whole data. The metric of Bayes Information 

Criteria (BIC) evaluated as a balance between a model 

evaluated the likelihood of a whole data set and model 

complexity determined by the number of model 

parameters and the number of samples is applied. 

Unlike data scientist interest for model classification 

and predictions P(Y|X), to food scientists and 

engineers the main focus is the determination of causal 

relationships between potential action (intervention) 

and expected effect by “doing”, i.e., P(Y|do(X=x)) 

(Pearl and Mackenzie, 2018; Pearl et al., 2021).  

Determination of causality enables scientists and 

technologists to make decisions and apply control
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 action to improve a production process. This work is 

a study of the causal impact between wine 

physicochemical properties and oenologist quality 

evaluations. Due to the strong correlation between 

covariates observation of causal effects is confounded 

and usually biased just by the usual correlation of 

observations. Graphical structural presentation of BN 

models enables detection and prevention of noncausal 

data “back door flows”, resulting in the erroneous and 

possibly contradictory inference of causal relations. 

By imposing action (intervention) probability 

distributions are changed: 

 
𝑃(𝑌|𝑋 = 𝑥) ≠ 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) (2) 

 

J. Pearl defined the back-door criterion for blocking 

confounding effects by closing pathways responsible 

for the interference of covariates with causal action 

(Pearl and Mackenzie, 2018; Pearl et al., 2021). Back-

door criterion defines adjustment sets Z of covariates 

relative to an ordered pair (Xi, Xj) if: (i) no node in Z is 

a descendant of Xi, and (ii) Z blocks every path 

between Xi and Xj that contains an arrow into Xi. If the 

effect of X on Y is identifiable, with available 

observed covariates, then the deconfounded BN model 

becomes a structural causal model (SCM), with the 

probability distribution of the causal effect given by: 

 

𝑃(𝑌|𝑑𝑜(𝑥)) = ∑ 𝑃(𝑦|𝑥, 𝑧) 𝑃(𝑧)

𝑍

𝑧∈𝑍

 (3) 

 

Although numerical evaluation of causal inference is 

very demanding, the availability of DoWhy Python 

package on the free and open-source platform GitHub 

makes it applicable to food technology researchers. 

DoWhy is a state-of-the-art application of refutation 

programming interface (API) which automatically 

tests causal assumptions for any estimation method, 

thus making inference more robust and accessible to 

non-experts (Pearl et al., 2021). 

 

Results 
 

The data sets for red and white wine qualities are 

observational (non-random) and are separately 

analysed and applied for the development of the 

models for quality predictions and causal analysis. 

Developed linear regression models are estimated by 

ordinary least squares (OLS) algorithm, non-linear 

random forest (RF) for quality classification and 

regression and structural causal model (SCM) based 

on Bayes networks (BN). The models for prediction 

are evaluated externally by training to test data 

splitting by k-folding and boot-strapping, while causal 

models are focused on internal structural validation 

evaluation of adjustment sets to block confounding by 

backdoor non-causal “flow” of statistical 

dependencies of interrelated physicochemical 

properties. To minimise confounding initially, the data 

sets are scanned for variable inflation factors (VIF) 

(Lin et al., 2021). VIF factors measure the extent by 

which estimated variances of regression model 

parameters are “inflated” due to the existence of 

multicollinearity among the predictor variables A VIF 

of 1 corresponds to a lack of correlation among the k-

th predictor and the remaining predictor variables, and 

hence the variance of the corresponding regression 

parameter and the rest of the model parameters are 

deflated. As a rule of “thumb” VIF value exceeding 4 

needs variable adjustments. The VIF values for red 

and white wine data sets are listed in Table 2. The 

variable density has the highest VIF values, 6.34 and 

28.23 corresponding to red and white wines. From a 

causal point of view, density is a collider conditioned 

on residual sugar and alcohol. At the same time, it is 

plausible to assume that human sensory response is 

sensitive to small but statistically significant density 

variation. Hence, the original data sets are adjusted by 

elimination of the variable density. The impact of the 

collider removal on each of the predictor VIF value is 

significant decrease, on average from 3.10 to 1.94 and 

5.65 to 1.43 for red and white wines correspondingly. 

Prior to causal analysis, predictive models for quality 

regression by linear ordinary least squares (OLS), 

nonlinear regression and classification by machine 

learning algorithms (RF), and determination of the 

predictor variable importance are developed 

(Breiman, 2001; Liaw and Wiener, 2002; Chen et al., 

2016; Breiman and Cutler, 2022; Chen et al., 2023). 

Statistical metrics of the models are given in Table 3. 

Accuracies of the regression models are evaluated by 

relative average root square error (RMSE %) with 

untrained 5-folded data sets. The average RMSE % by 

linear OLS is 12.7% and is not affected by the collider 

removal, however, it significantly changes the model 

parameter estimates and their significance. It is 

important to note that estimated coefficients of the 

linear model may not have any causal meaning, i.e., 

cannot be applied to technological decisions. For 

nonlinear regression, extreme gradient boosting 

algorithm (XGBoost) is applied (Chen et al., 2016; 

Breiman and Cutler, 2022; Chen et al., 2023). Since 

the XGBoost algorithm iteratively approaches the 

maximum of the objective function by gradient 

evaluation in functional space, it is generally 

recommended for evaluation of predictor importance. 

Average RMSE % are 5.13 and 4.17 for red and white 

wine, respectively. The decrease in errors for factor 

2.5 is due to the account of nonlinear predictor 
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dependencies and their interactions. Random forest 

(RF) algorithm is applied for multivariate prediction 

of quality by classification and regression. RF 

classification algorithm predicts a discrete variable 

(quality classes from 0 to 10), while the regression 

model predicts quality as a continuous function in the 

range [0,1]. Since the random forest algorithm is based 

on randomly selected subsets of data, the original data 

sets are resampled to avoid class sampling bias by 

yielding a uniform distribution of the quality classes. 

For metrics of multivariate classification metrics, class 

average relative accuracy, precision, recall and Fisher 

quotient are applied, Table 3. Comparison of the 

regression and classification models by decision 

tree ensembles is on the average accuracy level 

of 95%. 

importance based on the trained quality predictive 

Gradient boosting provided physicochemical models, 

with relative scores depicted in Fig. 1. The first five 

scores which account for about 90% of the total score 

are presented. The main distinction between red and 

white wines is in the most important variables. It 

shows that for the prediction of red wine, quality is the 

number of sulphates present in samples, but for white 

wine quality, it is the level of alcohol. However, due 

to strong interdependences between physicochemical 

properties, the obtained variable importance scores for 

predictions are different from causal importance.  

Discovering causal relations from observational data 

is complex and difficult, however, it is a main focus of 

science (Pearl and Mackenzie, 2018; Pearl et al., 

2021). 

 

Table 2. Variance inflation factors (VIF) for the original (un-adjusted) and adjusted models for the prediction of the quality of 

the red and white wines 

 

 

wine parameter 

red/white 

variance inflation factor 

VIF 

un-adjusted adjusted 

fixed acidity / g tartaric acid L-1 
7.77 2,98 

2.69 1.36 

volatile acidity / g acetic acid L-1 
1.79 1.76 

1.14 1.12 

citric acid / g L-1 
3.13 3.13 

1.16 1.15 

residual sugar /g L-1 
1.70 1.11 

12.64 1.44 

chlorides /g NaCl L-1 
1.48 1.46 

1.23 1.20 

free sulphur dioxide /mg S L-1 
1.96 1.95 

1.79 1.74 

total sulphur dioxide /mg S L-1 
2.19 2.17 

2.24 2.15 

density / g mL-1 
6.34 removed 

collider 28.23 

pH / 
3.32 2.24 

2.20 1.33 

sulphates /g K2SO4 L-1 
1.43 1.34 

1.14 1.06 

alcohol / % 
3.03 1.30 

7.71 1.65 

average VIF / 
3.10 1.94 

5.65 1.43 

 

Table 3. Statistical metrics of the model fits for quality classification and regression prediction 

 

model classification  regression 

method random forest RF RF         OLS 

wine accuracy % precision % recall % F RMSE % RMSE % 

red 92.1 91.8 92.1 0.918 5.13 12.96 

white 95.2 97.3 96.3 0.965 4.17 12.52 
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Figure 1. Importance of the first five physicochemical variables for wine quality prediction by random forest classification and 

with regression by the extreme gradient boosted random forest models 

 

Table 4. Adjustment sets for prediction of wine quality by physicochemical properties 
Quality  

         Predictor: X 

Adjustment sets: Z 

red wine 

alcohol residual sugar total sulphur 

dioxide 

pH  

sulphates volatile acidity citric acid chlorides free 

sulphur 

dioxide 

residual sugar citric acid    

 white wine 

alcohol volatile acidity residual sugar   

residual sugar citric acid    

pH fixed acidity residual sugar chlorides  

 

 
 

Figure 2. Directed acyclic graphs (DAG) of red and white wine data sets 

 

                                 Red wine                                                                      White wine 
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In principle, hypotheses of causal structures are 

deducted from prior knowledge of natural laws of 

physics and chemistry and induced from new 

experimental and observed data. Besides statistical 

estimation of causal effects, causal analysis is based 

on structural knowledge represented as directed 

acyclic graphs (DAG). In this work a constrained 

inductive PC-stable algorithm is applied (Kalisch et 

al., 2012; Kalisch et al., 2023; Scutari et al., 2023). The 

algorithm starts with a complete, undirected graph and 

deletes recursively edges based on tests of conditional 

independence decisions. The inferred DAG networks 

for the red and white wine sets are presented in Fig. 2. 

The graphs are obtained with 𝛸2 significance level 

α=0.05. Depicted are the significances of the graph 

edges (arcs) by which are measured change of score of 

the network if the arc is not present (Breiman and 

Cutler, 2022).  The corresponding BN models are 

validated by RMSE% of quality prediction with the 

training data sets. 11.1% and 10.73% errors for the red 

and white wine datasets are obtained. Since a linear 

structured BN model, these values are close to the 

values obtained by the linear unstructured OLS models 

(Table 3). Somewhat smaller errors are likely due to 

an increase of the degree of freedom by BN. 

Inference of causality between physicochemical 

variables Xi and wine quality Y from given DAG 

networks requires d-separation, i.e., blocking of “back 

door” non-causal interference. Required adjustment 

sets Z satisfies the following conditions: (1) no 

variable (graph node Xk) in Z is a descendent of Xi ; (2) 

Z blocks every pathway between Xi and Y that contains 

an arrow pointing to Xi (Pearl, 2021). Enumeration of 

Z adjustment sets of the covariates, as given in Table 

4, allows unbiased estimation of individual 

physicochemical causal effects from observational 

wine data (Textor et al., 2016; Textor et al., 2021). 

Application of Bayes network (BN) structured models 

and adjustment sets Z enables elimination of systemic 

bayes, however random exogenous influence through 

sampling and experimental errors are present in data 

as a challenge for estimation of do(x) causality for 

individual psycho-chemical parameters. Here are 

applied Bayes neural networks (BNN) with a single 

feedforward hidden layer to account for the 

nonlinearity of causal dependences and quantify the 

uncertainty associated with stochastic influences. 

The Y=BNN(x,Z) are supervised models with 

observed quality data Y, set x value of cause X, and Z 

adjustment set of covariates, as given in Table 4. The 

conditional probability of causal effect (Zhao and 

Hastie, 2021; Jia, 2018; Scott, 2022) is defined by:  

 

𝑃(𝑑𝑜(𝑋 = 𝑥)) = ∫ 𝑃(𝑌(𝑍 = 𝑧))𝑑𝑃(𝑧) (4) 

The integral is evaluated by Gibb’s sampling of the 

conditional probability function and averaging with N 

samples for the red and white sets:  
 

 𝑌(𝑥) =
1

𝑁
∑ 𝐵𝑁𝑁(𝑥, 𝑍𝑘)

𝑁

𝑘=1

 (5) 

 

The causal functions are graphically presented as 

partial dependency plots Fig. 3-4. In Fig. 3 causal 

graphs for red wines are depicted. The graphs 3.1-3 

correspond to the direct effects of alcohol, volatile 

acidity and sulphates. Alcohol and sulphates are 

conditioned on other endogenous variables, while 

sulphates are unconditioned and are solely influenced 

by unobserved exogenous variables. Alcohol and 

fixed acidity are the most important causal variables 

with positive and negative effects. Sulphates exhibit a 

strong nonlinear effect with a distinct maximum and 

considerable dispersion of prediction due to 

unobserved exogenous variable(s). Effects of fixed 

acidity, residual sugar and chlorides are depicted in 

Fig. 3.4-6. Fixed acidity and chlorides have a direct 

causal effect on quality, while residual sugar has an 

indirect effect mediated by alcohol content. Effects of 

fixed and volatile acidities are in balance resulting in 

an increase of quality with an increase in fixed and 

decrease of volatile acidity. The sensitivity of quality 

to fixed acidity is considerably lower compared to 

volatile acidity, and is highly dispersed possibly due 

to interference with other endogenous variables and/or 

influence of unobserved exogenous effects on fixed 

acidity. Increase of residual sugar decreases quality of 

red wine. However, it shows a maximum at 3 g L-1. 

Causal effect of chlorides in red wine shows strong 

nonlinearity. The increase of NaCl from negligible 

small concentrations results in sudden decline in 

quality for 25%. Causal graphs for white wine are 

depicted in Fig. 4.1-6. Causal effects of alcohol, 

volatile and fixed acidity are depicted in Fig.4.1-3. 

Volatile acidity and alcohol have a direct causal effect 

on quality, while the effect of fixed acidity is mediated 

by pH. Alcohol is the most important causal variable 

conditioned on residual sugar Fig. 4.5. Unlike red 

wine, for white wine volatile and fixed acidity are 

positively correlated, and an increase in acidity causes 

a decrease in quality. Increase in pH, Fig.4.6, results 

in an increase in quality. The effect of an increase of 

chlorides proportionally decreases quality and is 

highly dispersed at higher concentrations. Sulphates 

are a network collider hence they have no effect on 

white wine quality. However, for red wine sulphates are 

important direct causal variable. A general observation is 

that network of conditioned causalities for the white 

wine dataset is more complex (interrelated) when 

compared to the red wines. 
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Figure 3. Causal graphs for the red wines 

 

 
Figure 4. Causal graphs for the white wines 
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Conclusions 

 
Inspection of the data sets by variable inflation factor VIF 

analysis reveals the density as a common collider for red 

and white wine samples. Adjustment of the original data 

sets by removal of the collider decreases the average VIF 

for the red data from 3.1 to 1.94, and for the white from 3.65 

to 1.43. The adjustment has an insignificant increase in 

trained RMSE errors. However, it significantly changes the 

values and significances of the OLS model parameters and 

significantly decreases RMSE with untrained “new” data. 

The importance of nonlinearity and variable interactions are 

inferred from the increase of the prediction accuracy from 

the linear OLS model with RMSE= 90% to higher accuracy 

RMSE=95% by random forest regression and classification. 

The main conclusion of the causal analysis is the inference 

of physicochemical variables which have a direct effect on 

quality tests. Although the predictions by random forest ML 

models have very high accuracy, relative RMSE = 5%, the 

variable importance for prediction is not the most important 

causal variable.  Derived Bayes network models provide an 

inference of the variables which have a direct effect on the 

quality. For the red wine data set, the first three most 

important variables for ML prediction are sulphur, alcohol, 

and volatile acidity. However, the most important causal 

effect is associated with volatile acidity, alcohol and 

sulphur. Also, the most important variables for ML 

prediction of the white wine data set are alcohol, free 

sulphur dioxide, and volatile acidity, while the most 

important causal are alcohol, volatile acidity and residual 

sugar. Alcohol content has a distinctly positive effect on 

human quality prediction. For the red wine data, sulphates 

have a direct causal effect with a central maximum at 1 g 

K2SO4/L. However, for the white wine, it is a collider and 

has no effect on its quality. 

Minimal adjustment sets are inferred by the BN “parent” 

variables and enabled functional causal dependence. 

Application of Bayes neural networks (BNN) enabled 

graphical causal depictions as partial dependence plots. A 

marked difference is that the red wine causality 

dependencies are mostly nonlinear, while for the white are 

approximately linear. The important outcome of the BNN 

models is the evaluation of probability dispersions of the 

causal predictions. They show heteroscedasticity, i.e., 

dependencies of variances of predictions on corresponding 

concentrations. 

The obtained high model prediction accuracy of 95 % and 

the causal models have potentially important 

technologically applicable interventions in the wine 

industry. For example, it is a standard procedure to monitor 

the grape sugar before harvesting and accordingly adjust 

residual sugar in a production phase based on producer-

specific experience and “standard” recommendations. 

However, these traditional adjustments do not account of 

varying covariates. The proposed causal model provides 

predictions and optimisation with full knowledge of wine 

analytics and controllable sugar level during fermentation 

for the needs of a specific producer and vintage. The model 

also provides the causal impact of other controllable 

variables, such as volatile acidity produced during the 

malolactic fermentation in red wine depending on the 

engineer control activity of lactic bacteria.  

Another important application of the model is the prediction 

of the optimal “formula” for wine assemblage and 

“coupage”. The model classification accuracy enables 

adjustment of wine production to increase producer 

revenues for targeted markets (sub-branding) that match 

defined subpopulation preferences. Importantly, causal 

Bayes network models can be also used in control 

laboratories to check product adulteration, if a claim 

declared on the label is truthful regarding the wine’s 

vintage, geographical origin and/or non-declared sugar 

addition or dilution with water. 

Full potential of “big data” BN causal models is obtained 

with complexity when physicochemical data are integrated 

with other important technical parameters (temperature and 

micro-oxygen profiles), soil chemistry, agrotechnical 

measures, vineyard geography, local climate and key 

genetic data.  According to J. Pearl, causal hierarchy models 

provide three basic levels of inference: (1) prediction of 

simulated complex scenarios based on intuitive past 

knowledge of vintage records; (2) intervention policies for 

the improvement of agricultural measure in vineyards, post-

harvest treatment and wine fermentation control; (3) and 

counterfactual inference of new production technology and 

innovative specifications for wine increased quality and 

revenue to targeted markets. 
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